The Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two main parts: the main station part and the wireless house nodes part. The local wireless communication between the house nodes and the main station is done through ZigBee technology with low power and low data rate. The mode of operation of these house nodes can be configured dynamically by the end user and determined multicast or broadcast operation according to the user requirements. The implementation and upgrading of SHNS are costless, flexible and required less power comparing with other reviewed systems.
This research explores the obstacles teachers encounter in executing the smart schools initiative within the framework of Iraq, where educational facilities and digital preparedness are still at an early stage. Although worldwide trends reveal the growing use of smart technologies in education, Iraq has been hindered by systemic barriers, such as archaic curricula, restricted access to technologies, and an unqualified teaching staff. Data were collected using a validated questionnaire on 122 public school teachers working in Baghdad with a descriptive-analytical methodology. The study divided challenges into five areas: infrastructure, teacher preparedness, administrative support, curricular adaptation and cultural resistanc
... Show MoreDeveloping smart city planning requires integrating various techniques, including geospatial techniques, building information models (BIM), information and communication technology (ICT), and artificial intelligence, for instance, three-dimensional (3D) building models, in enabling smart city applications. This study aims to comprehensively analyze the role and significance of geospatial techniques in smart city planning and implementation. The literature review encompasses (74) studies from diverse databases, examining relevant solutions and prototypes related to smart city planning. The focus highlights the requirements and preparation of geospatial techniques to support the transition to a smart city. The paper explores various aspects,
... Show MoreProtection of the oil pipelineswhich extracted from the wells was found to shut the well and prevent the leakage of oil when broken using safety valve. This valve is automatically activated by loss of pressure between the well and pipelines, which take the pressure, signal from hydraulic pressure sensor through pressure control valve which has constant or variable value but it is regulated manually. The manual regulatory process requires the presence of monitoring workers continuously near the wells which are always found in remote areas. In this paper, a smart system has been proposed that work with proportional pressure control valve and also electronic pressure sensor through Arduino controller, which is programmed in a way that satisfie
... Show MoreThis paper presents a vibration suppression control design of cantilever beam using two piezoelectric patches. One patch was used as an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state estimation error is proved bounded. An optimal LQR controller is designed then using the estimated states with the slid
... Show MoreNH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreA descriptive study was conducted at two Epidemic Hospitals in Baghdad from 1st of August( 2003) to 1st of October (2004) in order to identify the nursing staff working in AIDS word to implementation of universal precautions for patients with AIDS and relation to some variable. The sample is consisted of (50) nurses who are working in AIDS ward in Ibn- Zuheir and Ibn- Al- Kahteeb Hospitals. Instruments consist of (20) items related with demographic characteristics of nurses and universal precautions items . Validity of the instrument was established through a panel of( 4) experts in specific fields . Descrip
The current study is unique in its emphasis on investigating design operation and concept from multiple scientific perspectives: including invention, technique, and design components. This research tends to study the methodology and creation of design process in a holistic manner so that the readers may grasp their characteristics and properties down to its minute epistemological detail. The investigation of the design concept is where the real groundwork and pressing need for the study begin. Creation and methodology are two primary concepts in relation to design these relationships can be formed in any design because of the various forces that act upon it. The primordial objective of this study is to evaluate the relationship betw
... Show MoreDirectional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The
... Show More