Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
Deaf and dumb peoples are suffering difficulties most of the time in communicating with society. They use sign language to communicate with each other and with normal people. But Normal people find it more difficult to understand the sign language and gestures made by deaf and dumb people. Therefore, many techniques have been employed to tackle this problem by converting the sign language to a text or a voice and vice versa. In recent years, research has progressed steadily in regard to the use of computers to recognize and translate the sign language. This paper reviews significant projects in the field beginning with important steps of sign language translation. These projects can b
Conventional dosage forms for topical and transdermal drug delivery have several disadvantages related mainly to its poor skin permeation and patient compliance. Many approaches have been developed to improve these dosage forms. Film forming drug delivery systems represents a recent advancement in this field. It provides improved patient compliance with enhanced skin permeation of drugs. In its simplest form, these consist of a polymeric solution, usually in a supersaturated state, in a suitable solvent. A plasticizer is usually added to improve the flexibility and enhance the tensile strength to the film. It is also possible to control and sustain the drug release from the films by controlling the polymeric content, concentration o
... Show MoreThe systems of governance in Europe are characterized by ancient democratic systems that have developed and developed through a long history of political conflicts that have emerged from a social reality that feeds them and receives the resulting effects. This is an achievement that has been achieved after the sacrifices and great efforts in formulating models of good governance through which to realize the aspirations of their peoples. . The democratic system operates within a balanced mechanism of two competing parties to manage and direct the work of the government and the parliament. The parties that achieve the majority in the elections carry out the functions of the government supported by their parliamentary base belonging to one
... Show MoreThe seizure epilepsy is risky because it happens randomly and leads to death in some cases. The standard epileptic seizures monitoring system involves video/EEG (electro-encephalography), which bothers the patient, as EEG electrodes are attached to the patient’s head.
Seriously, helping or alerting the patient before the seizure is one of the issue that attracts the researchers and designers attention. So that there are spectrums of portable seizure detection systems available in markets which are based on non-EEG signal.
The aim of this article is to provide a literature survey for the latest articles that cover many issues in the field of designing portable real-time seizure detection that includes the use of multiple
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
The challenge in studying fusion reaction when the projectile is neutron or proton rich halo nuclei is the coupling mechanism between the elastic and the breakup channel, therefore the motivation from the present calculations is to estimate the best coupling parameter to introduce the effect of coupled-channels for the calculations of the total cross section of the fusion , the barrier distribution of the fusion and the average angular momentum 〈L〉 for the systems 6He+206Pb, 8B+28Si, 11Be+209Bi, 17F+208Pb, 6He+238U, 8He+197Au and 15C+232Th using quantum mechanical approach. A quantum Coupled-Channel Calculations are performed using CC code. The predictions of quantum mechanical approach are comparable with the measured data that is
... Show MoreA study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.
A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t
The challenge in studying fusion reaction when the projectile is neutron or proton rich halo nuclei is the coupling mechanism between the elastic and the breakup channel, therefore the motivation from the present calculations is to estimate the best coupling parameter to introduce the effect of coupled-channels for the calculations of the total cross section of the fusion , the barrier distribution of the fusion and the average angular momentum 〈L〉 for the systems 6He+206Pb, 8B+28Si, 11Be+209Bi, 17F+208Pb, 6He+238U, 8He+197Au and 15C+232Th using quantum mechanical approach. A
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show More