A systematic approach is presented to achieve the stable grasping of objects through a two-finger robotic hand, in which each finger cavity was filled with granular media. The compaction of the latter, controlled by vacuum pressure, was used to adjust the structural and contact stiffness of the finger. The grasping stability was studied under the concurrent effect of an external torque and applied vacuum pressure. Stable grasping was defined as the no slippage condition between the grasped object and the two fingers. Three control schemes were adopted and applied experimentally to ensure the effectiveness of the grasping process. The results showed that stable and unstable grasping regions exist for each combination of applied torque and vacuum pressure. The two-finger robotic hands can be further improved for applications that require high load-carrying capabilities.
Abstract
The current research aims to develop a guidance program suitable for high school students and apply it to them in order to ensure the reduction of addiction to the use of different means of communication. The researchers used the scale of addiction to the means of communication (SAS) to measure the level of addiction as well as to identify the impact of the proposed guidance program in reducing the degree of addiction to communication. It was applied to a sample of (20) female students divided equally into two groups: an experimental group of (10) female students and a control group of (10) female students from the secondary level in a school under the department of education in the education of the alma
... Show MoreThe CdS quantum dots were prepared by chemical reaction
of cadmium oleylamine (Cd –oleylamine complex) with the
sulfite-oleylamine (S-oleylamine) with 1:6 mole ratios. The
optical properties structure and spectroscopy of the product
quantum dot were studied. The results show the dependence of the
optical properties on the crystal dimension and the formation of
the trap states in the energy band gap.
In this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.
This study was designed to evaluate the ability of bioemulsifier to inhibit the growth of some pathogenic microorganisms. Fourteen isolates belonged to Serratia sp. were collected and tested for their ability to produce bioemulsifier. Results showed that Serratia marcescens S10 (isolated from the gut of the American cockroach) had the highest ability to produce bioemulsifier, among 14 isolates belong to Serratia spp. and it had the ability to inhibit the growth of some microorganisms. The production of bioemulsifier was detected by determination of emulsification index (E24%), qualitative drop-collapse test, emulsification activity (E.A) and measuring the surface tension (S.T). The results of bioemulsifier produced by Serratia marcescens S1
... Show MoreIn this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
Background: The aim of this study was to evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) of different orthodontic adhesive systems after exposure to aging media (water storage and acid challenge). Materials and methods: Eighty human upper premolar teeth were extracted for orthodontic purposes and randomly divided into two groups (40 teeth each): the first group in which the bonded teeth were stored in distilled water for 30 days at 37°C, and the second group in which the bonded teeth were subjected to acid challenge. Each group was further subdivided into four subgroups (10 teeth each) according to the type of adhesive system that would be bonded to metal brackets: either non-fluoride releasing adhesive (NFRA),
... Show MoreModeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in
... Show More