In this paper,we focus on the investigated and studied of transition rate in metal/organic semiconductor interface due to quantum postulate and continuum transition theory. A theoretical model has been used to estimate the transition rate cross the interface through estimation many parameters such that ;transition energy ,driving electronic energy U(eV) ,Potential barrier ,electronic coupling ,semiconductor volume ,density ,metal work function ,electronic affinity and temperature T. The transition energy is critical facter of charge transfer through the interfaces of metal organic films device and itscontrol of charge injection and transport cross interface. However,the potential at interface is dependents on the physical properties of two materials and indicate to the nature of electron transport through system. We can demonstrate barrier height variations as a function of work function and electron affinity of a metal and semiconductor respectively. The flow charges of transfer indicate to the electrical properties of metallic-organic semiconductor devices and this model make us to election the material to use in the electronic devices.
A new ligand 3-hydroxy-2-(3-(4-nitrobenzoyl) thiouriedo) propanoic acid (NTP) where synthesized by reaction of 4-nitro benzoyl isothiocyanate with serine amino acid. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscpility, conductively measurement, The general formula [M (NTP) 2] where M+2= (Mn, Co, Ni, Cu, Zn, Cd, Hg,), the form of molecular for these complexes as tetrahedral except Cu has square planer.
A new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat
in this paper cquations of the per capita growth rate are considered sufficient conditions for oscillation of all solutions are obtained the asymptotie behavior of the nonoscillatory solution of all souliotions are obtained
Aims: To assess the success rate and implant stability changes of narrow dental implants (NDIs) during the osseous healing period. Materials and methods: This prospective observational clinical study included 21 patients with narrow alveolar ridge of restricted mesiodistal interdental span who received NDIs. The alveolar ridge width was determined by the ridge mapping technique. Implant stability was measured using Periotest® M immediately after implant insertion then after 4 weeks, 8 weeks and 12 weeks postoperatively. The outcome variables were success rate and implant stability changes during the healing period. The statistical analysis included one-way analysis of variance (ANOVA) and Tukey\'s multiple comparisons test, values < 0.05 w
... Show MoreIn this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.
The transition of professionals between different sectors is considered as one of sources of
acquisition of technology and will lead to add the practical experience to them. This experience
depending on different factors like: the scientific degree and practical experience by the
professionals, the technology possessed by the transferor sector, the duration that spent by
experienced in transferor sector, the type of work performed by professional….etc.
The research aims to verify the affect of these factors in technology transfer process.
Research reached that the technology transfer process which is depending on the Iraqi competencies
in work is unsatisfied level between Iraqi organizations because there are dif