Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Krawtchouk-Tchebichef transform (DKTT) has a high energy compaction and provides a high matching between Laplacian density and its coefficients distribution that affects positively on reducing residual noise without sacrificing speech components. Moreover, a cascade combination of hybrid speech estimator is proposed by using two stages filters (non-linear and linear) based on DKTT domain to lessen the residual noise effectively without distorting the speech signal. The linear estimator is considered as a post processing filter that reinforces the suppression of noise by regenerate speech components. To this end, the output results have been compared with existing work in terms of different quality and intelligibility measures. The comparative evaluation confirms the superior achievements of the proposed SEA in various noisy environments. The improvement ratio of the presented algorithm in terms of PESQ measure are 5.8% and 1.8% for white and babble noise environments, respectively. In addition, the improvement ratio of the presented algorithm in terms of OVL measure are 15.7% and 9.8% for white and babble noise environments, respectively.
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show MoreThis paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreSpin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two differen
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreWind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller (HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization (PSO) have been applied and compared in order to identify the
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreThe widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreAn accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show More