This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. Generally, mono and hybrid fiber specimens showed a significant increase in the splitting tensile strength compared to the plain specimen while they had a slight improvement in compressive strength and modulus of elasticity. The outcomes of the experimental results illustrated that hybrid fibers had the most significant advanced effect on concrete hardened properties. Moreover; the optimization procedure revealed that the best performance in terms of maximum mechanical properties achieved in the mixture reinforced by hybrid fibers[straight + hooked + glass]. The maximum achieved advantage reached (14.18%), (91.97%), and (36.70%) for compressive strength, splitting tensile strength, and modulus of elasticity respectively.
The dental amalgam of radioactive materials in the restoration of teeth because of its readily adaptable to existing materials in the oral cavity in addition to mechanical properties such as hardness mechanical resistance Alndgat and others in this study were prepared Almlagm used Guy dental restoration of silver alloy tin plus some elements to improve the characteristicsmechanical such as copper, zinc or indium in addition to mercury
Soil defilement with "raw petroleum" is a standout amongst the most across the board and genuine ecological issues going up against both the industrialized and oil country like Iraq. Along these lines, the impact of "raw petroleum" on soil contamination is one of most critical subjects that review these days. The present examination expects to research "unrefined oil"effectson the mechanical and physical properties of clayey soils. The dirt examples were acquired from Al-Doura area in Baghdad city and arranged by the "Brought together Soil Grouping Framework (USCS)" as silty mud of low pliancy (CL). Research center tests were done on contaminated and unpolluted soil tests with same thickness. The dirtied tests are set up by blending
... Show MoreThis work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mi
... Show MoreIron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
A series of experiments have been taken out to test the validity of the effect of Aluminum hydrate on its interaction with Aluminum during sintering of aluminum metal matrix. The approach has been shown to be valid and several compositions have been fabricated. The alumina hydrate particle size and the amount of alumina hydrate in the composites are also shown to have an influence on the extent of densification.
The densities for all sintered specimens were measured. It was found that density increases as compaction pressure increases, the density decreases as particles size increases. At 400 MPa there is an optimum particles size which is (90-125) µm to reach maximum density and the density decreases as volume fraction increase
... Show MoreThe dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MorePorous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff. The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreThe research deals with a new type of high-performance concrete with improved physical properties, which was prepared by using metal additives minutes (Metakaolin) and by studing their impact on the properties of mortar and concrete high-performance through destructive and non destructive tests. This type of concrete is used broadly in public buildings and in other structures . The research involved a number of experiments such as finding the activity index of burned at a temperature of 750 º C according to the standard ( ASTM C-311/03), as well as casting models for the cubic mortar mixtures and concrete containers at different rates of metakaolin ranging between (5% - 20%) as an added part to the cement mix to get a high- compressive
... Show More