Background: The use of electronic apex locators for working length determination eliminates many of the problems associated with the radiographic measurements (interference of anatomical structures, errors in projection such as elongation or shortening, and lack of three-dimensional representation). Its most important advantage over radiography is that it measures the length of the root canal to the apical constriction, not to the radiographic apex. The aim of this study was to assess the accuracy of a new fifth generation apex locator (Joypex 5) in recording the apical constriction and comparing it with a third generation apex locator (Root ZX) in vitro. Materials and method: Twenty four single-rooted sound human premolars, extracted for the purpose of orthodontic treatment and with fully-formed roots, were used in this study. Endodontic access cavity was prepared in each tooth and canal patency up to the apical foramen was checked with a #15 stainless steel K-file. No root canal preparation was performed. Root canal length measurement was done directly and electronically using two apex locators (Joypex 5 and Root ZX). Direct measurement of the root canal length was done by introducing a #15 K-file inside the root canal until its tip was just visible at the apical foramen, then removed from the root canal and its length was measured (in mm) and subtracted by 0.5 mm. For electronic measurement, the teeth were fixed in a sponge soaked in saline and the root canals were also filled with saline. The lip electrode was attached to the sponge and the apex locators were used according to the manufacturers' instructions. The file holder was clipped to the metal shaft of a #15 K-file and the file was then inserted inside the root canal and advanced until the display reading on the LCD of the apex locator was "0.5". The file was then removed from the root canal and its length was measured (in mm). The differences between the readings of each apex locator and the actual length of each canal were computed, and the results were analyzed statistically by paired t-test using SPSS Version 13. Results: The results of this study showed that the Joypex 5 apex locator showed a lower mean difference than the Root ZX apex locator as compared with the actual length, which was statistically significant (p<0.05). Concerning the accuracy of the two apex locators, Joypex 5 apex locator recorded the apical constriction exactly in 67%, while the Root ZX apex locator in only 25%. Within ±0.5 mm from the actual length, the accuracy of the Joypex 5 and the Root ZX were 83% and 67%, respectively. Within ±1 mm from the actual length, the accuracy of the Joypex 5 and the Root ZX were 100% and 96%, respectively. Conclusion: The Joypex 5 apex locator which is a fifth generation apex locator was more accurate in recording the apical constriction as compared with the Root ZX apex locator which is a third generation apex locator.
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures. Keywords: pyrimidin-2-amine, acetyl isothiocyanate, complexes, Antimicrobial activity
The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreNew Schiff base ligand (E)-6-(2-(4-(dimethylamino)benzylideneamino)-2-(4-hydroxyphenyl)acetamido)-3,3- dimethyl-7-oxo-4-thia-1- azabicyclo[3.2.0]heptane-2-carboxylic acid = (HL) was synthesized via condensation of Amoxicillin and 4(dimethylamino)benzaldehyde in methanol. Figure -1 Polydentate mixed ligand complexes were obtained from 1:1:2 molar ratio reactions with metal ions and HL, 2NA on reaction with MCl2 .nH2O salt yields complexes corresponding to the formulas [M(L)(NA)2Cl],where M=Fe(II),Co(II),Ni(II),Cu(II),and Zn(II), A=nicotinamide .
The (E)-4-chloro-N-(2-(dimethylamino)ethyl)-5-((8-hydroxy quinolin-5-yl)diazenyl)-2-methoxybenzamide azo ligand (L) has been synthesized through the reaction of diazonium salt for 5-amino-4-chloro-N-(2-(dimethylamino) ethyl)-2-methoxybenzamide with 8-hydroxyquinoline and identified azo ligand (L) using spectroscopic studies (FTIR, UV-Vis, 1H and 13CNMR, mass), and micro-elemental analysis (C.H.N). Metal chelates of Co(II), Ni(II), Cu(II), as well as Zn(II) have been completed as well as characterized using mass spectra, flame atomic absorption, elemental analysis (C.H.N), infrared, UV-Vis spectroscopy, as well as conductivity, magnetic measurements. The metal-to-ligand ratio in all complexes, as determined by analytical data, was 1:2 and ex
... Show MoreEight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V.
... Show MoreThe preparation and spectral characterization of complexes for Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) ions with new organic heterocyclic azo imidazole dye as ligand 2-[(2`-cyano phenyl) azo ]-4,5-diphenyl imidazole ) (2-CyBAI) were prepared by reacting a dizonium salt solution of 2-cyano aniline with 4,5-diphenyl imidazole in alkaline ethanolic solution .These complexes were characterized spectroscopically by infrared and electronic spectra along with elemental analysis‚ molar conductance and magnetic susceptibility measurements. The data show that the ligand behaves a bidantate and coordinates to the metal ion via nitrogen atom of azo and with imidazole N3 atom. Octahedral environment is suggested for all metal complex
... Show More