: Sound forecasts are essential elements of planning, especially for dealing with seasonality, sudden changes in demand levels, strikes, large fluctuations in the economy, and price-cutting manoeuvres for competition. Forecasting can help decision maker to manage these problems by identifying which technologies are appropriate for their needs. The proposal forecasting model is utilized to extract the trend and cyclical component individually through developing the Hodrick–Prescott filter technique. Then, the fit models of these two real components are estimated to predict the future behaviour of electricity peak load. Accordingly, the optimal model obtained to fit the periodic component is estimated using spectrum analysis and Fourier model, and the expected trend is obtained using simple linear regression models. Actual and generation data were used for the performance evaluation of the proposed model. The results of the current model, with improvement, showed higher accuracy as compared to ARIMA model performance.
Rainfall in Nigeria is highly dynamic and variable on a temporal and spatial scale. This has taken a more pronounced dimension due to climate change. In this study, Standard Precipitation Index (SPI) and Mann-Kendall test statistical tools were employed to analyze rainfall trends and patterns in Gombe metropolis between 1990 and 2020 and the ARIMA model was used for making the forecast for ten (10) years. Daily rainfall data of 31 years obtained from Nigerian Meteorological Agency, (NIMET) was used for the study. The daily rainfall data was subjected to several analyses. Standard precipitation index showed that alternation of wet and dry period conditions had been witnessed in the study area. The result obtained showed that there is an u
... Show MoreIn this paper has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed wi
... Show MoreIn this paper, we describe a new method for image denoising. We analyze properties of the Multiwavelet coefficients of natural images. Also it suggests a method for computing the Multiwavelet transform using the 1st order approximation. This paper describes a simple and effective model for noise removal through suggesting a new technique for retrieving the image by allowing us to estimate it from the noisy image. The proposed algorithm depends on mixing both soft-thresholds with Mean filter and applying concurrently on noisy image by dividing into blocks of equal size (for concurrent processed to increase the performance of the enhancement process and to decease the time that is needed for implementation by applying the proposed algorith
... Show MoreAkaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).
The objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.