The important device in the Wireless Sensor Network (WSN) is the Sink Node (SN). That is used to store, collect and analyze data from every sensor node in the network. Thus the main role of SN in WSN makes it a big target for traffic analysis attack. Therefore, securing the SN position is a substantial issue. This study presents Security for Mobile Sink Node location using Dynamic Routing Protocol called (SMSNDRP), in order to increase complexity for adversary trying to discover mobile SN location. In addition to that, it minimizes network energy consumption. The proposed protocol which is applied on WSN framework consists of 50 nodes with static and mobile SN. The results havw shown in each round a dynamic change in the route to reach mobile SN, besides prolong the network lifetime in compare with static SN.
In this paper, a new 5G Passive Optical Network (5G-PON) employing all-optical orthogonal frequency division multiplexing (AO-OFDM) is proposed in hybrid bidirectional standard single mode fiber (SSMF)/free space optical (FSO). Additionally, an optical frequency generator (OFG) source is utilized. The proposed model is simulated using VPI photonics software. Analytical modeling and simulations have been conducted for a new approach to generate OFG by cascaded two-frequency modulators and one electro-absorption modulator. A sinusoidal RF signal source is utilized to drive all these modulators. The results reveal that 64 optical multiplexed carriers with a frequency spacing of 30 GHz are generated. These optical carriers have power variations
... Show MoreEstimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show MoreThe Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two mai
... Show MoreAn approach for hiding information has been proposed for securing information using Slanlet transform and the T-codes. Same as the wavelet transform the Slantlet transform is better in compression signal and good time localization signal compression than the conventional transforms like (DCT) discrete cosine transforms. The proposed method provides efficient security, because the original secret image is encrypted before embedding in order to build a robust system that is no attacker can defeat it. Some of the well known fidelity measures like (PSNR and AR) were used to measure the quality of the Steganography image and the image after extracted. The results show that the stego-image is closed related to the cover image, with (PSNR) Peak Si
... Show MoreRecently new concepts such as free data or Volunteered Geographic Information (VGI) emerged on Web 2.0 technologies. OpenStreetMap (OSM) is one of the most representative projects of this trend. Geospatial data from different source often has variable accuracy levels due to different data collection methods; therefore the most concerning problem with (OSM) is its unknown quality. This study aims to develop a specific tool which can analyze and assess the possibility matching of OSM road features with reference dataset using Matlab programming language. This tool applied on two different study areas in Iraq (Baghdad and Karbala), in order to verify if the OSM data has the same quality in both study areas. This program, in general, consists
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreComputer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More