This research, involved synthesis of some new 1,2,3-triazoline and 1,2,3,4- tetrazole derivatives from antharanilic acid as starting material .The first step includes formation of 2-Mercapto-3-phenyl-4(3H)Quinazolinone (0) through reacted of anthranilic acid with phenylisothiocyanate in ethanol, then compound (0) reaction with chloro acetyl chloride in dimethyl foramamide (DMF) to prepare intermediate S-(α-chloroaceto-2-yl)-3-phenylquinazolin-4(3H)-one (1); compound (1) reacted with sodium azide to yield S-(α-azidoaceto-2-yl)-3-phenylquinazolin-4(3H)-one (2), while Schiff bases (3-10) were prepared from condensation of substituted primary aromatic amines with different aromatic aldehydes in absolute ethanol as a solvent. Compound (2) reacted with Schiff bases to give 1,2,3,4-tetrazoline derivatives (11- 18) which was entered in 1,3-dipolar cyclo addition reactions with some of α,βunsaturated carbonyl compounds to give 1,2,3-triazoline (19-24) and triazole (25- 27) derivatives respectively. The structure of newly synthesized compounds were identified by spectral methods their [Fourier transform infrared (FTIR) and some of them 1H-NMR, 13C-NMR] and measurements some of its physical properties and some specific reactions. Furthermore were studied the effects of the preparing compounds on some strains of bacteria.
The aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1
... Show MoreAzo ligand 11-(4-methoxyphenyl azo)-6-oxo-5,6-dihydro-benzo[4,5] imidazo[1,2-c] quinazoline-9-carboixylic acid was derived from 4-methoxyaniline and 6-oxo-5,6-dihydro-benzo[4,5]imidazo[1,2-c]quinazoline-9-carboxylic acid. The presence of azo dye was identified by elemental analysis and spectroscopic methods (FT-IR and UV-Vis). The compounds formed have been identified by using atomic absorption in flame, FT.IR, UV-Vis spectrometry magnetic susceptibility and conductivity. In order to evaluate the antibacterial efficiency of ligand and its complexes used in this study three species of bacteria were also examined. Ligand and its complexes showed good bacterial efficiencies. From the obtained data, an octahedral geometry was proposed for all p
... Show MoreSchiff bases (SBs) based on amino acid derivative stand for multipurpose ligands that formed by condensing amino acids with carbonyl groups. They are significant in pharmaceutical and medical areas due to their widespread biological actions such as antiseptic, antifungal, along with antitumor actions. Transition metallic complexes resulting from SB ligands with biological activity were extensively experimented in the literature. In this article, we review, in details, about synthesizing and biological performances of SBs along with its complexes.
في البحث الحالي تم تحضير ودراسة النشاط الحيوي لسلسلة من البوليمرات الجديدة المحورة من الكيتوسان مع مركبات تحتوي على مجموعة الآزو. في البداية تم تحضير ملح الديازونيوم من تفاعل 3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diamine مع حامض الهيدروكلوريك المركز ونتريت الصوديوم .ثم تفاعل الازدواج بين ملح الديازونيوم مع الديهايدات اروماتية معوضة لإنتاج مشتقات الازو (1-6). ازو شف بيس كيتوسان((12-7 والتي حضرت من تفاعل الكيتوسان مع مشتقات
... Show MoreA new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17- tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These st
... Show MoreThe study included isolate and diagnose fungus Fusarium solani of the local soil and purified and development in the PDB medium and the filtrate extracted using a solvent (Ethyl acetate) to obtain the fungal secondary metabolites extract. This extract has shown bioactivity against both reference isolates (E.coli (ATCC25922) and S.aureus(NCTC6571)) and pathogenic isolates S.pyogenes, K. pneumonia and S.typhimurium using agar disk diffusion technique , The diameters of the inhibition zones of fungal secondary metabolites24.0 mm against E.coli and 31.5 mm against S.aureus,and 34.0 mm against K.pneumoniae and 18.0 mm against S.pyogenes and 33.5mm against S.typhimurium. The test revealed the minimum inhibitory concentration (MIC) of the fungal
... Show MorePseudomonas aeruginosa is a common and major opportunistic human pathogen, its causes many and dangersinfectious diseases due to death in some timesex: cystic fibrosis , wounds inflammation , burns inflammation , urinary tract infection , other many infections otitis external , Endocarditis , nosocomial infection and also causes other blood infections (Bacteremia). thereforebecomes founding fast and exact identification of P. aeruginosafrom samples culture very important.However, identification of this species may be problematic due to the marked phenotypic variabilitydemonstrated by samples isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA(rRNA) sequence data
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.