A novel series of mixed-ligand complexes of the type, [ML1(L2)3]Clx [M= Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiff base (HL1) as main ligand, nicotinamide (L2) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR,1H-NMR,13C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiff base ligand, HL1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxygen atoms, whereas the secondary ligand L2 (nicotinamide, Nam) coordinated through pyridine nitrogen atoms. The synthesized complexes exhibited significant antimicrobial activity when evaluated against P. pseudomonas, E. coli, S. aureus and B. subtilis microbes. The DFT calculations were also carried out to ascertain the bonding insights into the structure. In addition, molecular docking analysis was performed carried out to know the interactions between complexes and their probable binding sites in penicillin binding protein (PBP2). Moreover, drug-likeness and toxicity of the compounds were also performed to predict the suitability of the complexes as drugs.
Anew Schiff base (NaHL) has been prepared from the reaction between the salt of amino acid glycine with 2-hydroxy naphthaldehyde. By tridentate Schiff base of (ONO), donors were characterized by using U.V and spectrophotometer techniques. Complexes of Co(II) Ni(II) Cu(II) and Zn(II) ion with the ligand have been prepared, these complexes were identified by infrared, electronic spectral data, elemental analysis, magnetic moments, and molar conductivity measurements. It is concluded from the elemental analysis that all the complexes have (1:2) [metal:ligand] molar ratios, octahedral, with the exception to Zn(II) complex which have (1:1)[metal:ligand] molar ratio.
... Show MoreTwo series of bent and liner core mesogen containing 1,2,4-traizole ring [VI]a,g and series were synthesized by many steps starting from esterification of isophthalic acid and terephathalic acid with methanol to yield diester compound [I]a,b which was converted to their acid hydrazide [II]a,b and the acid hydrazide reacted with ammonium thiocyanate or diester reacted with thiosemicarbazide to yield compounds [III]a,b. Then cyclization by 4% NaOH to yielded 1,2,4 traizole-3- thiol compounds [IV]a,b , afterword adding hydrazine hydrate to yield compounds [V]a,b. These compounds condensated with different substituted aldehyde to give new Schiff bases[VI]a,b ,[VII]a,b . Also , reaction acid hydrazide [II]a,b with aldehyde [VII] to yielded Schif
... Show MoreA first step in this research was to synthesize Schiff's bases(1-3)using an Amoxcilline intensification reaction with different aromatic aldehydes in absolute ethanol. In benzene and refluxing conditions,Schiff's bases were cyclized with succinic and Phthalic anhydride to give a new sequence of 1,3-oxazepine derivatives(4-6) and (7-9),respectively.The last step,cyclization reactions with sodium azide in THF solvent resulted in the formation of [10 and 11], which are supposed to be biologically significant.FT.IR, 1H-NMR and 13C-NMR (for compound 4,7,9, and 11),as well as melting points reported, were used to characterize these prepared compounds ,Bacillus (G+), Staphylococcus (G+), and E.Coli (G-)were screened against these compounds. . To i
... Show MoreTwo series of Schiff Bases [VI]n and thiazolidin-4-one derivatives[VII]n were synthesized by many steps starting from cyclization of 4- hydroxyacetophenon with thiourea in iodine to yield 1,3-thiazole compound which was reacted with pentoxy bromide in anhydrous potassium carbonate to converted compound[II] and this reacted with Phenol to yield azo compound[III]. The azo compound reacted with ethyl chloro acetate in basic medium to get a new easter compound[IV] which is converted to their acid hydrazid[V]. The later compound condensation with n-alkoxy benzaldehyde to give new Schiff bases[VI]n . Imine group undergoes addition cyclization with thioglycolic acid to get thiazolidinone compounds[VII]n .Also, two new series of Schiff Bases [XII]n
... Show MoreObjectives: Two derivatives of cephalexin were synthesized by reaction with isatin-glycine Schiff base and bromoisatin-glycine Schiff base separately. Methods: Cephalexin was linked through the amine group to isatin glycine and bromoisatin glycine Schiff bases by amide bond formation. Results: These derivatives were characterized by FT-IR, H-NMR, elemental CHN analysis and then tested for their antimicrobial activity compared to cephalexin against gram-positive, gram-negative bacteria and Candida albicans fungi. Conclusion: The two compounds showed better activity against Staphylococcus aureus, compound 3b is more active against Escherichia coli, and compound 3a is more active against Klebsiella pneumonia.
Three Schiff bases from Benzaldehyde and Salicylaldehyde have been synthesized (A, 1and 2) and two of them (1and 2) have been tested for anti-inflammatory activity. The p-aminobenzene sulfonamide has been synthesized from acetanilide through the addition of excess chlorosulfonic acid then concentrated ammonia solution; Schiff base of this derivative (2) exhibited good level of activity against egg-white induced edema in rat hind paw, while the other tested derivative exhibited no activity.
Key words: Schiff bases, sulfonamide derivatives, salicylaldehyde
Schiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreIn this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.