A novel series of mixed-ligand complexes of the type, [ML1(L2)3]Clx [M= Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiff base (HL1) as main ligand, nicotinamide (L2) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR,1H-NMR,13C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiff base ligand, HL1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxygen atoms, whereas the secondary ligand L2 (nicotinamide, Nam) coordinated through pyridine nitrogen atoms. The synthesized complexes exhibited significant antimicrobial activity when evaluated against P. pseudomonas, E. coli, S. aureus and B. subtilis microbes. The DFT calculations were also carried out to ascertain the bonding insights into the structure. In addition, molecular docking analysis was performed carried out to know the interactions between complexes and their probable binding sites in penicillin binding protein (PBP2). Moreover, drug-likeness and toxicity of the compounds were also performed to predict the suitability of the complexes as drugs.
The research on coordination polymers chemistry based on organic-metal framework with bridging ligands has accelerated during the past two decades. It is an interested hot topic in the synthetic inorganic chemistry, which allowed the fabrication of a variety of interested materials. These materials have shown a range of applications including light harvesting and magnetic properties. The thesis is divided in three chapters. The first chapter gives a general introduction on the development of self-assembled polymeric species based on transition metal. It is also covered a summary of the literature review on the current state of the art on self-assembled coordination ploymers. Furthermore, it includes a description on various relevant topics
... Show MoreA new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
Schiff bases, named after Hugo Schiff, are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also have a broad range of applications as antioxidants. An overview of antioxidant applications of Schiff bases and their complexes is discussed in this review. A brief history of the synthesis and reactivity of Schiff bases and their complexes is presented. Factors of antioxidants are illustrated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.
A new Schiffbase derivative ligands [H4L1] and [H2L2] have been produced by condensed ophathaldehyde with ethylene diamine and [N1, N1'E, N1, N1'E)-N1, N1'-(1, 2-phenylenebis (methan-1-yl- 1ylidene)) diethane-1, 2-diamine] with 2-benzoyl benzoic acid. Schiffbase ligands have been separated and categorized by 1H, 13 C-NMR, (CHN) elemental analysis, UV-visible, mass spectroscopy and FTIR methods. Ten new coordination complexes were prepared and structurally diagnosed: [M(L1)Cl2] and [M2(L2)Cl2] where M(II) = Mn (II), Co(II), Ni(II), Cu(II) and Hg(II). The complexes have been typified by FTIR, UV-visble atomic absorption, molar conductance elemental analysis, and magnetic susceptibility. The details of the ligand (H4L1) compounds are getting a
... Show MoreSchiff bases are versatile compounds synthesized from the condensation of primary amino compounds with aldehydes or ketones. The high thermal of many Schiff base and their complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. This thermal behavior of Schiff bases and their complexes was evaluated by TGA/DTG and DTA curves with 10 mass losses related to dehydration and decomposition. This review summarizes the developments in the last decade for thermal analysis of Schiff bases. Therefore, synthesis of Schiff bases and their complexes are reviewe
In this paper, we have provided a very thorough analysis of a new novel chelate metal ion complex of [Cu(II),Ag(I)] prepared via the interaction with the ligand{ 2-amino-8-((4-chloro-3-hydroxyphenyl) diazenyl)azo]guanine} [LAAG], which is synthesized by diazo coupling of the 5-amino-2-chlorophenol with amino acid guanine. The ligand and its complexes are identified by a variety of techniques, like [HNMR, FTIR, and Uv-vis] spectral, thermal analysis (TGA), and element analyses (CHN). The molar ratio was achieved so that the Cu(II) complex has (1:2) (M:L) with octahedral geometry; however, the Ag(I) complex has (1:1) (M:L) with tetrahedral geometry, and the ligand acts as neutral N,N-bidentate; as well as the ligand (LAAG) and its complexe
... Show MoreThe corrosion inhibiting properties of the new furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione in acidic solution (1.0 M HCl) were explored utilizing electrochemical, surface morphology (AFM), and quantum chemical calculations approaches. The novel furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione shows with an inhibitory efficiency value of 99.4 percent at 150 ppm, carbon steel corrosion in acidic medium is effectively inhibited, according to the results. The influence of temperature on corrosion prevention was studied using adsorption parameters and activation thermodynamics. The novel furan derivative creates a protective layer over the metallic surfa
... Show More