BACKGROUND: The humeral shaft fractures have a good rate of union, despite this fact, still there is a significant rate of nonunion after nonoperative treatment and more often after operative treatment. AIM: The aim of the study is to evaluate the autogenous onlay graft with compression plate for treatment of persistent humeral shaft non-union with failed previous surgery both radiological and functional outcome. MATERIALS AND METHODS: A prospective study on twenty patients having persistent aseptic non-union age between 20 and 60 years old, after failed surgical treatment of fractures humeral shaft in Al-Zahra teaching and Al-Kindy teaching hospitals, while infected nonunion, diabetes mellitus, secondary metastasis, smoking, alcoholism, and patients on long medication with corticosteroid were excluded from the study. All our patients were treated with corticocancellous onlay bone grafting harvesting from the ipsilateral upper tibia and compression plating (graft parallel to plate) and follow-up for at least 18 months post-operative to evaluate both radiology and functional using Mayo elbow performance index. RESULTS: All the patients ended with a solid union without hardware failure, and no one patient needs further surgery, even with significant resorption of the graft, there is a good chance of graft re-calcification and solid union with good to excellent functional outcome. CONCLUSION: Very successful solid union results achieve in those patients with established aseptic nonunion and pseudoarthrosis of the humerus.
A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show Morebeef and chicken meat were used to get Sarcoplasim, the chicken Sarcoplasim were used to prepare antibody for it after injected in rabbit, the antiserums activity were 1/32 by determined with Immune double diffusion test, the self test refer to abele for some antiserums to detected with beef sarcoplasim, which it mean found same proteins be between beef and chicken meat, which it refer to difficult depended on this immune method to detect for cheat of chicken meat with beef, so the antibody for beef sarcoplasim were removed from serum by immune absorption step to produce specific serum against chicken sarcoplasim that it used in Immune double diffusion test to qualitative detect for cheat beef with 5% chicken meat or more at least, and the
... Show MoreAbstract
In this research will be treated with a healthy phenomenon has a significant impact on different age groups in the community, but a phenomenon tonsillitis where they will be first Tawfiq model slope self moving averages seasonal ARMA Seasonal through systematic Xbox Cengnzla counter with rheumatoid tonsils in the city of Mosul, and for the period 2004-2009 with prediction of these numbers coming twelve months, has found that the specimen is the best representation of the data model is the phenomenon SARMA (1,1) * (2,1) 12 from the other side and explanatory variables using a maximum temperature and minimum temperature, sol
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreThe researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r
... Show More