The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show MoreThe nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio
... Show MoreA non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu
... Show MoreJournal of Physics: Conference Series PAPER • THE FOLLOWING ARTICLE ISOPEN ACCESS Estimate the Rate of Contamination in Baghdad Soils By Using Numerical Method Luma Naji Mohammed Tawfiq1, Nadia H Al-Noor2 and Taghreed H Al-Noor1 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 1294, Issue 3 Citation Luma Naji Mohammed Tawfiq et al 2019 J. Phys.: Conf. Ser. 1294 032020 DOI 10.1088/1742-6596/1294/3/032020 DownloadArticle PDF References Download PDF 135 Total downloads 88 total citations on Dimensions. Turn on MathJax Share this article Share this content via email Share on Facebook (opens new window) Share on Twitter (opens new window) Share on Mendeley (opens new window) Hide article and author
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreThe aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3