The city of Karbala is one of the most important holy places for visitors and pilgrims from the Islamic faith, especially through the Arabian visit, when crowds of millions gather to commemorate the martyrdom of Imam Hussein. Offering services and medical treatments during this time is very important, especially when the crowds head to their destination (the holy shrine of Imam Hussein (a.s)). In recent years, the Arba'in visit has witnessed an obvious growth in the number of participants. The biggest challenge is the health risks, and the preventive measures for both organizers and visitors. Researchers identified various challenges and factors to facilitating the Arba'in visit. The purpose of this research is to deal with the religious and cultural events that occur during the Arba'in visit in Iraq by providing optimal and alternatives routes, and strategic resting points along the way from all cites to Karbala. This research depends on data analysis and artificial intelligence methods to determine the best routes and determine locations of the rest points accurately and effectively. These aims will be accomplished by analysing population distribution and potential paths. For the purpose of providing the best rest points on the proposed roads and decreasing the crowds within these stations, the rest stations are divided into two categories: main stations and sub-stations. The main stations contain services such as: rest places, accommodation, health and awareness services, in addition to providing food and drink; whereas the sub-stations comprise only rest places, sleep, food and drink. The research suggests that the main stations
The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
The purpose of this study is to diagnose factors that effect Thi-Qar behavioral intention to use internet. A sample of (127) internet users of university staff was taken in the study and were analyzed by using path analyze . The study concluded that there is a set of affecting correlation. It was founded that exogenous variables (gender, income, perceived fun, perceived usefulness, Image, and ease of use) has significant effect on endogenous (behavioral intention) . The result of analysis indicated that image hopeful gained users comes first, ease of use secondly, perceived fan and perceived usefulness on (dependent variables (daily internet usage and diversity of internet usage. Implication of these result are discussed . the st
... Show MoreA high percentage of existing buildings in Iraq are traditional buildings, yet there is approximately no such green building in Baghdad or other governorates. Most of these buildings require urgent upgrading to increase their performance (operationally, economically, and environmentally), also the building owners looking for identifying and implementing many of the green building measures to reduce the operational and maintenance costs of their buildings. The decision-makers need to support the possibility of achieving sustainable measures of existing building rating systems such as LEED or BREEAM, and that would require an optimization model. The goal of this study is to maximize the
Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreThe gravity method is a measurement of relatively noticeable variations in the Earth’s gravitational field caused by lateral variations in rock's density. In the current research, a new technique is applied on the previous Bouguer map of gravity surveys (conducted from 1940–1950) of the last century, by selecting certain areas in the South-Western desert of Iraqi-territory within the provinces' administrative boundary of Najaf and Anbar. Depending on the theory of gravity inversion where gravity values could be reflected to density-contrast variations with the depths; so, gravity data inversion can be utilized to calculate the models of density and velocity from four selected depth-slices 9.63 Km, 1.1 Km, 0.682 Km and 0.407 Km.
... Show MoreThis study aimed to analyze and measure the relationship between oil revenues and financial sustainability in Iraq, the study used the stylistic approach inductive and deductive approach. Accompanied by the use of quantitative and analytical style, which was based on two variables oil revenues and net general budget on annual data covered the period (1990-2013). Among the most important findings of the study contain the time-series variables study on the root of the unit and is not stable in the general level, and become stable after the use of mathematical processors to gain access to a stable by taking the first difference of natural Ogartm of the series. The way (Johnson) to a long-term relationship between oil revenues and ne
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
A Field experiment was conducted in Horticulture and Landscape Department, College of Agricultural Engineering Sciences, University of Baghdad, Al-Jadriah during fall 2019-2020 to study changes in the growth and yield of broccoli grown in the alternative solution ABEER, affected by gas enrichment and spraying with coconut water and moringa aqueous extract under the hydroponic cultivation system. Nested design with three replications adopted in the experiment, each of them included in main plot the first factor, which is gas enrichment (O2 and O3), Then levels of second factor were randomly distributed within each replicate, which included spra
Today, problems of spatial data integration have been further complicated by the rapid development in communication technologies and the increasing amount of available data sources on the World Wide Web. Thus, web-based geospatial data sources can be managed by different communities and the data themselves can vary in respect to quality, coverage, and purpose. Integrating such multiple geospatial datasets remains a challenge for geospatial data consumers. This paper concentrates on the integration of geometric and classification schemes for official data, such as Ordnance Survey (OS) national mapping data, with volunteered geographic information (VGI) data, such as the data derived from the OpenStreetMap (OSM) project. Useful descriptions o
... Show More