Maintaining the quality of apricot fruits during storage is not an easy task due to the changes in their physical and chemical properties, so it is necessary to use less expensive, easy to apply, environmentally friendly, and safer preservatives to maintain the nutritional value of apricot. The damage to some fruits during storage can be a source of infection, which leads to the damage of healthy fruits more quickly, which requires building an intelligent model to detect damaged fruits. The aim of the research is to study the effect of immersing apricots in lemon juice once and sugar-water solution again on the quality properties of apricots, including sweetness, color, hardness, and water content. On the other hand, the YOLOv7 algorithm was used to detect healthy fruits and damaged areas using a camera. The results showed that sweetness increased with increasing immersion time in sugar-water solution to reach 22.1 Brix, while it decreased with increasing immersion time in lemon juice to 19.12 Brix. Also, hardness increased with increasing immersion time in sugar-water solution to reach 3.7 kg/cm2. The water content of apricots decreased with increasing immersion time in different immersion media from 77.14 g to 73.93 g. In addition, CIE-L*a*b levels increased with increasing immersion time in different immersion media. For the performance indicators of the YOLOv7 algorithm, precision of 84.5%, recall of 87%, F1 of 0.77, and [email protected] of 77.2 were obtained, respectively. Therefore, this study is expected to reduce the workload in post-harvest fruit processing and help in the rapid identification and detection of damaged fruits based on smart detection algorithms, thus improving sorting efficiency and reducing both waste and economic losses, which enhances smart agriculture technologies.
Background: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts. Objectives: To evaluate the diagnostic efficacy of Automated breast ultrasound and compare
... Show MoreBackground: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts.
Objectives:<
... Show MoreRecently, there has been an increase in the prevalence of ulcerative colitis (UC), and inflammatory bowel diseases (IBD) worldwide, especially in certain recently industrialized countries like China and In¬dia. Globally, the prevalence of UC, a chronic illness that affects the large intestine, is rising. Fifty adherent invasive Escherichia coli (AIEC) isolates were identified from ulcerative colitis biopsy samples originating from the Gastrointestinal tract (GIT) and Hepatology teaching hospitals/medical city in Baghdad City. The test’s results demonstrated that the AIEC isolates had a high level of resistance to the majority of the an-tibiotics under investigation. Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) and m
... Show MoreThe aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.
In this study water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals) using N-acetyl cysteine as a stabilizer were prepared to investigate the utility of quantum dots (QDs) in distinguishing damaged DNA, (extracted from blood samples of leukaemia patients), from intact DNA (extracted from blood samples of healthy individuals) to be used for biosensing application. Based on the optical characterization of the prepared QDs, the XRD results revealed the formation of the NAC-CdTe-QDs with a grain size of 7.1nm. Whereas, the SEM test showed that the spherical size of the NAC-CdTe-QDs lies within 11~33nm. NAC-CdTe-QDs have superior PL emission properties at of 550nm and UV-Vis absorption peak at 300nm. The energy gap
... Show MoreThis paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.
A geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show MoreThe experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are app
... Show MoreCriteria to be met in selecting the obtimal areas for generating alternative electric energy from wind