This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished
This work presents the simulation of a Low density Parity Check (LDPC) coding scheme with
multiuserMulti-Carrier Code Division Multiple Access (MC-CDMA) system over Additive White
Gaussian Noise (AWGN) channel and multipath fading channels. The decoding technique used in
the simulation was iterative decoding since it gives maximum efficiency with ten iterations.
Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the
Orthogonal Frequency Division Multiplexing (OFDM). A 12 pilot carrier were used in the estimator
to compensate channel effect. The channel model used is Long Term Evolution (LTE) channel with
Technical Specification TS 25.101v2.10 and 5 MHz bandwidth including the chan
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
The primary objective of this paper, is to introduce eight types of topologies on a finite digraphs and state the implication between these topologies. Also we used supra open digraphs to introduce a new types for approximation rough digraphs.
In this thesis, we introduce eight types of topologies on a finite digraphs and state the implication between these topologies. Also we studied some pawlak's concepts and generalization rough set theory, we introduce a new types for approximation rough digraphs depending on supra open digraphs. In addition, we present two various standpoints to define generalized membership relations, and state the implication between it, to classify the digraphs and help for measure exactness and roughness of digraphs. On the other hand, we define several kinds of fuzzy digraphs. We also introduce a topological space, which is induced by reflexive graph and tolerance graphs, such that the graph may be infinite. Furthermore, we offered some properties of th
... Show MoreIn this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
The Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.
In this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.
In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
The present paper studies the generalized Φ- recurrent of Kenmotsu type manifolds. This is done to determine the components of the covariant derivative of the Riemannian curvature tensor. Moreover, the conditions which make Kenmotsu type manifolds to be locally symmetric or generalized Φ- recurrent have been established. It is also concluded that the locally symmetric of Kenmotsu type manifolds are generalized recurrent under suitable condition and vice versa. Furthermore, the study establishes the relationship between the Einstein manifolds and locally symmetric of Kenmotsu type manifolds.