The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
I've made extensive studies on the distribution of the electric field stable heterogeneous within intensive that contain metal rings with slope diagonal positive to a site halfway to be in its maximum value, followed by decline negative and equally to the other end of the concentrated distributed by electric stable thanking sequentially and have focused empirical studies in the pastthe molecules that you focused Pantqaúha during passage
Abstract
The fiber Bragg grating (FBG) technology has been rapidly applied in the sensing technology field. In this work, uniform FBG was used as pressure sensor based on measuring related Bragg wavelength shift. The pressure was applied directly by air compressor to the sensor and the pressure was ranged from 1 to 6 bar.
This sensor also was affected by the external temperature so as a result it could be used as a temperature sensor. This sensor could be used to monitor the pressure of dams. It has been shown from the result that the sensor is very sensitive to the pressure and the sensitivity was (67 pm\bar) and is very sensitive to temperature and the sensitivity was (10p
... Show MoreIn this paper, a step-index fiber with core index 1.445 5 1 7 and cladding index 1.443 1 5 7 has been designed and studied. Multimode operation is achieved by using a fiber with core radius 25 μm operating at a wavelength of 1.3 μm. The mode parameters (effective refractive index, phase constant, fractional modal power in the core and cutoff wavelength) were calculated using RP fiber calculator (PRO version 2020). The shapes of the intensity and amplitude distribution of linearly polarized guided modes were shown.
Abstract: Two different shapes of offset optical fiber was studied based on coreless fiber for refractive index (RI)/concentration (con.) measurement, and compare them. These shapes are U and S-shapes, both shapes structures were formed by one segment of coreless fiber (CF) was joined between two single mode (SMF) lead in /lead out with the same displacement (12.268µm) at both sides, the results shows the high sensitive was achieved in a novel S-shape equal 98.768nm/RIU, to our knowledge, no one has ever mentioned or experienced it, it’s the best shape rather than the U-shape which equal 85.628nm/RIU. In this research, it was proved that the offset form has a significant effect on the sensitivity of the sensor. Addi
... Show MoreFiber Bragg Grating has many advantages where it can be used as a temperature sensor, pressure sensor or even as a refractive index sensor. Designing each of this fiber Bragg grating sensors should include some requirements. Fiber Bragg grating refractive index sensor is a very important application. In order to increase the sensing ability of fiber Bragg gratings, many methods were followed. In our proposed work, the fiber Bragg grating was written in a D-shaped optical fiber by using a phase mask method with KrFexcimer. The resultant fiber Bragg grating has a high reflectivity 99.99% with a Bragg wavelength of 1551.2 nm as a best result obtained from a phase mask with a grating period of 1057 nm. In this work it was found that the rota
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show More