The efficient behavior of a low-concentrating photovoltaic-thermal system with a micro-jet channel (LCPV/T-JET) and booster mirror reflector is experimentally evaluated here. Micro-jets promote the thermal management of PV solar cells by implementing jet water as active cooling, which is still in the early stages of development. The booster mirror reflector concentrates solar irradiance into solar cells and improves the thermal, electrical, and combined efficiencies of the LCPV/T-JET system. The LCPV/T-JET system was tested under ambient weather conditions in the city of Bangi, Selangor, Malaysia, and all data was recorded between 10:00 a.m. and 4:00 p.m. Parametric studies were conducted to compare the performance of the LCPV/T-JET system to that of a conventional PV module. It is found that the short-circuit current of a standard PV module could be increased by 28% and 11.7%, with and without the use of jet water and booster mirror reflectors, respectively. Moreover, the power supplied by the PV component increases to 31% and 16%, respectively, with and without jet water and a booster mirror reflector. The characteristic curves for current–voltage and power–voltage curves also confirmed the superior thermoelectric properties of the LCPV/T-JET system. The measurements reveal a drop in the electrical efficiency of solar cells from 14.5% to 12.25% as the temperature of the cells increases from 32.5 °C to 66.5 °C between 10:00 a.m. and 1:00 p.m. Meanwhile, the thermal and overall efficiencies declined from 84% to 81.5% and 96% to 93%, respectively.
In this study the effect of fiber volume fraction of the glass fiber on the thermal conductivity of the polymer composite material was studied. Different fiber volume fraction of glass fibers were used (3%, 6%, 9%, 12%, and 15%). Specimens were made from polyester which reinforced with glass fibers .The fibers had two arrangements according to the direction of the thermal flow. In the first arrangement the fibers were parallel to the direction of the thermal flow, while the second arrangement was perpendicular; Lee's disk method was used for testing the specimens. The experimental results proved that the values of the thermal conductivity of the specimens was higher when the fibers arranged in parallel direction than that when the fibers
... Show MoreThe solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentratio
... Show MoreIn the present study, nanoporous material type MCM-41 was prepared by the sol-gel technique and was used as a carrier for prednisolone (PRD) drug delivery. The structural properties of mesoporous were fully characterized by X-ray diffraction (XRD), N2 adsorption /desorption and Fourier-transform infrared (FTIR). The mass transfer in term of adsorption process (loading) and desorption process (releasing) properties were investigated. The maximum drug loading efficiency was equal to 38% and 47.5% at different concentrations. The PRD released was prudently studied in water media of pH 6.8 simulated body fluid (SBF) in according to "United State Pharmacopeia (USP38)". The results proved that the release of prednisolone from MCM-41
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.
 
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we pr
... Show MoreThis research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreRation power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreA low speed open circuit wind tunnel has been designed, manufactured and constructed at the Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the first part of the work; that is the design calculations, simulation and construction. It will be followed by a second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70 m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow disturbances in the test section.
... Show MoreA low speed open circuit wind tunnel has been designed, manufactured and constructed at the
Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of
the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the
first part of the work; that is the design calculations, simulation and construction. It will be followed by a
second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test
section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70
m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow
distu