The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
The state and partial level densities were calculated using the corresponding formulas that are obtained in the frame work of the exciton model with equidistant spacing model (ESM) and non-ESM (NESM). Different corrections have been considered, which are obtained from other nuclear principles or models. These corrections are Pauli Exclusion Principle, surface effect, pairing effect, back shift due to shell effect and bound state effect . They are combined together in a composite formula with the intention to reach the final formula. One-component system at energies less than 100 MeV and mass number range (50-200) is assumed in the present work. It was found that Williams, plus spin formula is the most effective approach to the composite
... Show MoreThis study was designed to show the advantages of using the combination of metformin and rosiglitazone over using each drug alone in treatment of women with polycystic ovary syndrome (PCOS).Forty four women with PCOS were classified into 3 groups , group 1 received rosiglitazone (4mg/day) for 3 months , group ΙΙ received metformin ( 1500 mg/day)for three months and groupΙΙΙ received the combination ( rosiglitazone 4mg/day + metformin 1500 mg/day) for the same period of treatment . The blood samples were drawn before treatment and after 3 months of treatment . The fasting serum glucose , insulin , progesterone , testosterone , leutinizing hormone were measure
... Show MoreThe process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The develop
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreIn this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
In this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.
Mobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10
... Show More