The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods
... Show MoreCongenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing
ABSTRACT Pulmonary alveolar microlithiasis is rare infiltrative pulmonary disease characterized by intra-alveoli deposition of microliths. We present a familial case of an adult female with complaint of progressive shortness of breath on exertion. Chest radiograph showed innumerable tiny dense nodules, diffusely involving both lungs mainly the lower zones. High-resolution CT scan illustrated widespread intra-alveolar microliths, diffuse ground-glass attenuation areas and septal thickening predominantly in the basal regions. Chest radiograph is all that is needed for the diagnosis of this case but CT scan was done to demonstrate the extent and severity of this disease
During the last few years, the greener additives prepared from bio-raw materials with low-cost and multifunctional applications have attracted considerable attention in the field of lubricant industry. In the present work, copolymers derived from sunflower and linseed oils with decyl methacrylate were synthesized by a thermal method using benzoyl peroxide (BPO) as a radical initiator. Direct polymerization of fatty acid double bonds in the presence of a free radical initiator results in the development of environmentally friendly copolymeric additives (Co-1 and Co-2). Fourier Transform Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) were used to characterize the resulting copolymers. Thermal decomposition of copolymers was de
... Show MoreIn this work, an inventive photovoltaic evaporative cooling (PV/EC) hybrid system was constructed and experimentally investigated. The PV/EC hybrid system has the prosperous advantage of producing electrical energy and cooling the PV panel besides providing cooled-humid air. Two cooling techniques were utilized: backside evaporative cooling (case #1) and combined backside evaporative cooling with a front-side water spray technique (case #2). The water spraying on the front side of the PV panel is intermittent to minimize water and power consumption depending on the PV panel temperature. In addition, two pad thicknesses of 5 cm and 10 cm were investigated at three different water flow rates of 1, 2, and 3 lpm. In Case #1,
... Show MoreIn this work, polyvinylpyrrolidone (PVP), Multi-walled carbon nanotubes (MWCNTs) nanocomposite was prepared and hybrid with Graphene (Gr) by casting method. The morphological and optical properties were investigated. Fourier Transformer-Infrared (FT-IR) indicates the presence of primary distinctive peaks belonging to vibration groups that describe the prepared samples. Scanning Electron Microscopy (SEM) images showed a uniform dispersion of graphene within the PVP-MWCNT nanocomposite. The results of the optical study show decrease in the energy gap with increasing MWCNT and graphene concentration. The absorption coefficient spectra indicate the presence of two absorption peaks at 282 and 287 nm attributed to the π-π* electronic tr
... Show More