The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
This paper reports a comprehensive study on the behavior of concavely curved soffit reinforced concrete (RC) beams strengthened in flexure with carbon fiber-reinforced polymer (CFRP) composites under static loading. The main objective of this paper is to explore the effect of surface concavity on the bond performance of externally bonded wet layup CFRP sheets and laminates. An experimental program consisting of flexural strengthening of 24 RC beams with concavely curved soffits was carried out. All specimens were simply supported RC beams tested under three-point bending. Of the 24 beams, 6 beams were flat soffit RC beams, and the remainder were fabricated with concavely curved soffits with a degree of curvature that is ranging from 5 mm/m
... Show MoreHuman beings have an innate and natural aim to achieve their self-interests and to show their ability to overcome challenges in a better way, therefore the move towards self determination is expressed by intrinsic motivation. The desire of absorbing in this task is to enjoy the task in it self and benefitting from it such a motivation is the desire rooted in human nature to judge and choose in which individual is conscious in his self, abilities and adequacy that help him in control the different situations of life passed by him. His choices and actions are voluntary and non-restricted to intervention or external control because control is inner and subjective, while his behavior is self-regulated with the feeling of
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
The present work focuses on the experimental implementation of one of the fiber optical sensors, the optical glass fiber built on surface Plasmon resonance. A type of optical glass fiber was used in this work, single-mode no-core fiber with pre-tapering diameter: (125.1 μm) and (125.3 μm), respectively. The taper method can be tested by measuring the output power of the optical fiber before and after chemical etching to show the difference in cladding diameter due to the effect of hydrofluoric acid with increasing time for the taper process. The optical glass fiber sensor can be fabricated using the taper method to reduce the cladding diameter of the fibers to (83.12 µm, 64.37 µm, and 52.45 µm) for single-mode fibers using Hydrofluoric
... Show MoreObjective(s): This study aims to assess health related quality of life among Iraqi patients with chronic viral hepatitis
B and C also to find out the relationship between health related quality of life and patients demographic
characteristic and to design a new measurement scale for assessing QoL among viral hepatitis B and C patients
which can be suitable to be adopted for Iraqi patients
Methodology: A descriptive quantitative study is carried out at Gastroenterology and Hepatology Teaching
Hospital from February, 1st, 2011 to August 30th 2011, Anon probability (purposive sample) of (100) chronic viral
hepatitis B and C persons , who were clients of Gastroenterology and Hepatology Teaching Hospital / outpatient
clin