Preferred Language
Articles
/
0hinJ5gBVTCNdQwCQrkX
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.

Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Opcion- Universidad Del Zulia
Sample for the inner control on the quality in accordance with standard
...Show More Authors

Scopus (1)
Scopus
Publication Date
Tue Jun 01 2021
Journal Name
Ieee Systems Journal
Intelligent Traffic Management and Load Balance Based on Spike ISDN-IoT
...Show More Authors

An intelligent software defined network (ISDN) based on an intelligent controller can manage and control the network in a remarkable way. In this article, a methodology is proposed to estimate the packet flow at the sensing plane in the software defined network-Internet of Things based on a partial recurrent spike neural network (PRSNN) congestion controller, to predict the next step ahead of packet flow and thus, reduce the congestion that may occur. That is, the proposed model (spike ISDN-IoT) is enhanced with a congestion controller. This controller works as a proactive controller in the proposed model. In addition, we propose another intelligent clustering controller based on an artificial neural network, which operates as a reactive co

... Show More
Scopus (19)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue Jan 30 2024
Journal Name
International Journal Of Engineering Pedagogy (ijep)
The Impact of Two Proposed Strategies Based on Active Learning on Students' Achievement at the Computer and Their Social Intelligence
...Show More Authors

Active learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis

... Show More
View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
2021 International Conference On Intelligent Technology, System And Service For Internet Of Everything (itss-ioe)
Application of MQ-Sensors to Indoor Air Quality Monitoring in Lab based on IoT
...Show More Authors

Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Mon Sep 09 2024
Journal Name
Научный Форум
the functioning of artificial intelligence for the development of communication skills among foreigners learning Russian
...Show More Authors

Preview PDF
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
Taxonomy of Memory Usage in Swarm Intelligence-Based Metaheuristics
...Show More Authors

Metaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char

... Show More
View Publication Preview PDF
Crossref (3)
Clarivate Crossref
Publication Date
Wed Mar 16 2022
Journal Name
International Journal Of Recent Contributions From Engineering, Science & It
Smart Learning based on Moodle E-learning Platform and Digital Skills for University Students
...Show More Authors

Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
An Overview of Audio-Visual Source Separation Using Deep Learning
...Show More Authors

    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 06 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Assessment of Reasons for Partial Compliance and Non-compliance to the Routine Childhood Vaccination Schedule in Al-Karkh District
...Show More Authors

Abstract

      Objective (s): To evaluate reasons for partial compliance and non-compliance to the

                              routine childhood vaccination schedule in Al-Karkh district 

Methodology: Descriptive study , using the evaluation approach, is carried throughout the present study to determine the reasons for the Routine Childhood Vaccination at  health care sectors and primary health care centers at  Al-Karkh District in Baghdad City, Convenient, non-probability, sample of (90) mother who are recruited from health care sectors at Al-Karkh District in Baghdad City. All mothers, who ha

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Crossref