ZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% and fast response with 12 ms & 17 ms for rise and fall time respectively.
This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma
... Show MoreIn this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and
... Show MoreThe Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.
In this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition r_d(1.04nm/sec) as function to annealing temperature (373 and 473K), from XRD analysis we can see that the degree of crystalline increase with T_a, and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
Indium antimony (InSb) alloy were prepared successfully. The InSb films were prepared by flash thermal evaporation technique on glass and Si p-type substrate at various substrate temperatures (Ts= 423,448,473, and 498 K). The compounds concentrations for prepared alloy were examined by using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF). The structure of prepared InSb alloy and films deposited at various Ts were examined by X-ray diffraction (XRD).It was found that all prepared InSb alloy and films were polycrystalline with (111) preferential direction . The electrical properties of the films are studied with the varying Ts. It is found that
... Show MoreCuAlTe2 thin films were evaporation on glass substrates using the technique of thermal evaporation at different range of thickness (200,300,400and500) ±2nm. The structures of these films were investigated by X-ray diffraction method; showing that films possess a good crystalline in tetragonal structure. AFM showed that the grain size increased from (70.55-99.40) nm and the roughness increased from (2.08-3.65) nm by increasing the thickness from (200-500) nm. The optical properties measurements, such as absorbance, transmtance, reflectance, and optical constant as a function of wavelength showed that the direct energy gap decreased from (2.4-2.34) eV by the gain of the thickness.
In this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition (1.04nm/sec) as function to annealing temperature (373 and 373K), from XRD analysis we can see that the degree of crystalline increase with , and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
Several observations have showed the synergistic effect of nutrients elements and phytoestrogens on bone resorption elimination. Zn is one of the trace elements found to increase the stimulatory effect of phytoestrogens including genestein, coumestrol and daidzein on bone formation; however the synergistic modulation of Zn, genestein, coumestrol and daidzein on proinflammatory-producing T-cells and receptor activator of NFκB ligand (RANKL) expression that implicated in osteoclast formation is still open area to debate. This study found that Zn enhanced the inhibitory effect of genistein, daidzein and coumestrol on TNF-α expression; however the same effect was shown with daidzein on IL-1β expression while there is no furthe
... Show More