Nowadays, information systems constitute a crucial part of organizations; by losing security, these organizations will lose plenty of competitive advantages as well. The core point of information security (InfoSecu) is risk management. There are a great deal of research works and standards in security risk management (ISRM) including NIST 800-30 and ISO/IEC 27005. However, only few works of research focus on InfoSecu risk reduction, while the standards explain general principles and guidelines. They do not provide any implementation details regarding ISRM; as such reducing the InfoSecu risks in uncertain environments is painstaking. Thus, this paper applied a genetic algorithm (GA) for InfoSecu risk reduction in uncertainty. Finally, the effectiveness of the applied method was verified through an example.
A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreSolid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, t
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreMost of the Internet of Things (IoT), cell phones, and Radio Frequency Identification (RFID) applications need high speed in the execution and processing of data. this is done by reducing, system energy consumption, latency, throughput, and processing time. Thus, it will affect against security of such devices and may be attacked by malicious programs. Lightweight cryptographic algorithms are one of the most ideal methods Securing these IoT applications. Cryptography obfuscates and removes the ability to capture all key information patterns ensures that all data transfers occur Safe, accurate, verified, legal and undeniable. Fortunately, various lightweight encryption algorithms could be used to increase defense against various at
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreSorghum cultivation is often accompanied by low field emergence rates and weak seedlings, which may be due to genetic or environmental stress. A factorial experiment was conducted in the spring and fall seasons of 2022 using a randomized complete block design with split-plot arrangement and four replications. Planting dates (spring season: Feb. 15th, Mar. 1st, 15th, and Apr. 1st, 15th; fall season: Jun. 15th, Jul. 1st, 15th, and Aug. 1st, 15th) were allocated to the main plots. Seeds stimulation treatments (35% banana peel extract + 100 mg L-1 citric acid and distilled water soaking treatment only) were allocated to the subplots. The interaction treatment (banana peel extract + citric acid) with the planting date of April 15 showed the high
... Show MoreModeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show MoreIn order to take measures in controlling soil erosion it is required to estimate soil loss over area of interest. Soil loss due to soil erosion can be estimated using predictive models such as Universal Soil Loss Equation (USLE). The accuracy of these models depends on parameters that are used in equations. One of the most important parameters in equations used in both of models is (C) factor that represents effects of vegetation and other land covers. Estimating land cover by interpretation of remote sensing imagery involves Normalized Difference Vegetation Index (NDVI), an indicator that shows vegetation cover. The aim of this study is estimate (C) factor values for Part of Baghdad city using NDVI derived from satellite Image of Landsat-7
... Show MoreThe specific activity of 29 soil samples collected from Fuel
Fabrication Facility FFF at AL-Tuwaitha site, 20 km south of
Baghdad were determined using HPGe detector in a low background
configuration, it's relative efficiency of 40%, and resolution of 2keV
for the 1332 keV gamma ray emission of 60Co. The range of activity
concentrations of 226Ra, 232Th and 40K were between (12.56-31.96),
(10.2-18.4) and (47.47-402.1) Bq/kg respectively. In order to assess
any radiological hazard to human health, the absorbed gamma dose
rate D in air at 1m above the ground surface was calculated in the
range (18.87 to 36.46) nGy/h; the outdoor annual effective dose
equivalent AEDE was evaluated to vary from 0.0039 to 0.0076