Cerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally, Mulliken's charge transfer of the Ce1xNixO2 system exhibits an ionic bond between Ce or Ni and O, and covalent bonds between Ce and Ni atoms. The analysis of absorption spectra demonstrates that Ni-doped CeO2 is a material with potential use in photocatalytic, photovoltaic, and solar panels.
In the present study, the structural properties which included the X-rays diffraction, and DSC, the mechanical properties, which include tensile test, threepoint bending test (Bending Test), hardness test and thermal conductivity of the polymers reinforced with calcite (PVC/CaCO3) at different temperature (25-40-80-
120-160-200-220) °C. The research results showed that the XC degree of X-ray diffraction decreased at high temperatures (220 ˚C), while the inter-polymerized polymer (PVC / CaCO3) increased at high temperatures. The DSC test results showed that the degree of crystallinity (XC) decreases at high temperatures (220 ˚C). The mechanical test results, their values were found to decrease at (
Forward-swept wings were researched and introduced to improve maneuverability, control, and fuel efficiency while reducing drag and they are often used alongside canards, to further enhance their characteristics. In this research, the effects of canard dihedral angles on the wing loading of a forward-swept wing in transonic flow conditions were studied, as the wing loading provides a measure of wing’s efficiency (lift/drag). A generic aircraft model from literatures was selected, simulated, and compared to, using CFD software ANSYS/Fluent where the flow equations were solved to calculate the aerodynamic characteristics. The research was carried at two different Mach numbers, 0.6 and 0.9, for five different canard dihedral angles which tra
... Show MoreThe calcination treatments and a binder of poly acrylic acid PAA (1wt%)
effects on kaolinite particles were investigated through dielectric properties at
1MHz ,quantitative analysis of X-ray diffraction and microstructure. The calcinated
samples at 850°C/3hr and fired at 1350°C/2hr were revealed decrease in broadening
(Full Width at half maximum) FWHM and increase of dielectric constant.
In this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism
... Show MoreAb – initio restricted Hartree - Fock method within the framework of large unit cell (LUC) formalism is used to investigate the electronic structure of Si and Ge nanocrystals. The surface and core properties are investigated. A large unit cell of 8 atoms is used in the present analysis. Cohesive energy, energy gap, conduction and valence band widths are obtained from the electronic structure calculations. The results are compared with available experimental data and theoretical results of other investigators. The calculated lattice constant is found to be slightly larger than the corresponding experimental value because we use only 8 atoms and we compared the results with that of the bulk crystals, nanoclusters are expected to have str
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th
In this research, we studied the structural and optical properties of In2O3 films which prepared by chemical spray pyrolysis method on the glass substrate heated 400 . The effect of annealing temperature 100 for one hour on theses properties are studied. The result of Xray diffraction showed the prepared films were polycrystalline and orientation was (222) before and after annealing, optical properties study for prepared films by using (UV-VIS-NIR) spectrophotometer in the wave length range (300-1100)nm, We found the transmission increases after annealing to 90%. Sensitivity measurement of In2O3 films for gas (CO) and optical detector showed that after annealing at temperature 100 .