Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
Suppose that
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.
The green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreBackground: We aimed to investigate the accuracy of salivary matrix metalloproteinases (MMP)-8 and -9, and tissue inhibitor of metalloproteinase (TIMP)-1 in diagnosing periodontitis and in distinguishing periodontitis stages (S)1 to S3. Methods: This study was a case–control study that included patients with periodontitis S1 to S3 and subjects with healthy periodontia (controls). Saliva was collected, and then, clinical parameters were recorded, including plaque index, bleeding on probing, probing pocket depth, and clinical attachment level. Diagnosis was confirmed by assessing the alveolar bone level using radiography. Salivary biomarkers were assayed using an enzyme-linked immunosorbent assay. Results: A total of 45 patients (15
... Show More