Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
Objectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropom
... Show MoreSeventy five isolates of Saccharomyces cerevisiae were identified, they were isolated from different local sources which included decayed fruits and vegetables, vinegar, fermented pasta, baker yeast and an alcohol factory. Identification of isolates was carried out by cultural microscopical and biochemical tests. Ethanol sensitivity of the isolates showed that the minimal inhibitory concentration of the isolate (Sy18) was 16% and Lethal concentration was 17%. The isolate (Sy18) was most efficient as ethanol producer 9.36% (v/w). The ideal conditions to produce ethanol from Date syrup by yeast isolate, were evaluated, various temperatures, pH, Brix, incubation period and different levels of (NH4)2HP04. Maximum ethanol produced was 10
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreGlobal date palm production is steadily increasing and adopting technologies such as unmanned aerial vehicles (UAVs) and deep learning can reduce costs, save time, and improve productivity. To address this issue, the authors have proposed an innovative approach that uses UAVs for high-resolution aerial imaging. These images, collected by the Department of Computer Engineering at Al-Salam University in Baghdad and the Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, support improved orchard management, palm counting, and yield estimation. Precise spraying and pollination are also facilitated and accelerated, reducing overall cultivation costs. The proposed methodology involves processing captur
... Show MoreThis study aims at discussing how gender differences might affect communication among people. For this purpose, several TV interviews are selected and examined on the discourse level. Developing a model of analysis ,is found that certain linguistics have been used by male speakers ,whereas different aspects have been utilized my female speakers like deictic expressions and lexical items of emotion and delicacy .
A vocative expression can be defined as an expression of direct address where the participant identity is set forth explicitly within a sentence. This study aims at showing how the vocative particles are used in literally texts, namely in the short story “The Garden Party" written by Kathryn Mansfield and identifying the forms of these vocative particles as used by the characters along with the functions of these vocative particles. For the analysis of vocative forms, the researcher used Quirk and Greenbaum (1973) model. Functionally, the data were analyzed based on Quirk et al. (1985) model. However, the results of this study shows that the characters in “The Garden Party” short story used various forms of vocative particles and
... Show MoreMR Younus…, 2020 - Cited by 2
This study explores the language used in reporting political headlines conducting a rhetorical stylistic analysis. It is based on showing the effect of the rhetorical stylistic relations in news reporting. The aim is to investigate the structure adopted in reporting political news. It argues that the rhetorical stylistic devices are necessary and applicable to non-literary texts, i.e. political headlines to evaluate language use in the representation of non-literary texts. The analysis was carried out on data selected from the British broadsheet The Guardian and the American New York Times newspaper headlines. The data were examined and subjected to a contrastive analysis incorporating rhetorical and stylistic tools to discern h
... Show More