Preferred Language
Articles
/
0hZqeIkBVTCNdQwCvonF
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Study the contrast of thermal expansion behavior for PMMA denture base, single and hybrid reinforced using the thermomechanical analysis technique (TMA)
...Show More Authors

This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees22fr
Study the contrast of thermal expansion behavior for PMMA denture base, single and hybrid reinforced using the thermomechanical analysis technique (TMA)
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 26 2025
Journal Name
Applied Data Science And Analysis
Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis
...Show More Authors

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id

... Show More
View Publication
Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Developing Load Balancing for IoT - Cloud Computing Based on Advanced Firefly and Weighted Round Robin Algorithms
...Show More Authors

The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities.   Cloud computing can be used to store big data.  The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Telkomnika
Proposed different relay selection schemes for improving the performance of cooperative wireless networks
...Show More Authors

Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (10)
Crossref (4)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Biotechnology Research Center
Candida and Candidiasis - A review of Virulence Factors
...Show More Authors

   The occurrences of invasive candidiasis has increased over the previous few decades. Although Candida albicans considers as one of the most common species of organisms, that cause acquired fungal infections. Candida albicans is an opportunistic fungal pathogen and inherent in as a lifelong, the yeast is present in healthy individuals as a commensal, and can reside harmlessly in human body. However, in immuno-compromised individuals, the fungus can invade tissues, producing superficial infections and, in severe cases, life-threatening systemic infections. This review wills emphasis on virulence factor of C. albicans including (adhesion, invasion, candida proteinase, and phenotypic switching and biofilm formation. I

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Lightweight Block and Stream Cipher Algorithm: A Review
...Show More Authors

Most of the Internet of Things (IoT), cell phones, and Radio Frequency Identification (RFID) applications need high speed in the execution and processing of data. this is done by reducing, system energy consumption, latency, throughput, and processing time. Thus, it will affect against security of such devices and may be attacked by malicious programs. Lightweight cryptographic algorithms are one of the most ideal methods Securing these IoT applications. Cryptography obfuscates and removes the ability to capture all key information patterns ensures that all data transfers occur Safe, accurate, verified, legal and undeniable.  Fortunately, various lightweight encryption algorithms could be used to increase defense against various at

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 08 2024
Journal Name
Al-academy
Medea Euripides between text and contemporary theatrical presentation
...Show More Authors

It is not available for us to go back in time and see plays old and it plays giants tragedy ancient Greek (Aeschylus, Sofokls, and yourbedes) through the eyes of a generation ago, and if we were able to go back to Ntegathm play it is certain that we will not taste or Nstassig for much of what we see from these offers will not afford the traditional religious rituals, which was accompanied also dance and music in the style of ancient Greek play was representing a large part of the theater see manifestations Can our eyes and ears we twentieth century audience to accept those appearances, and it was then?
Inevitably it will look like a museum bycollection not only. So we find ourselves in the light of the foregoing forced When you do rem

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
Journal Of Computer Science
Peer-to-Peer Video Conferencing Using Hybrid Content Distribution Model
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Crossref