Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
The concept of closed quasi principally injective acts over monoids is introduced ,which signifies a generalization for the quasi principally injective as well as for the closed quasi injective acts. Characterization of this concept is intended to show the behavior of a closed quasi principally injective property. At the same time, some properties of closed quasi principally injective acts are examined in terms of their endomorphism monoid. Also, the characterization of a closed self-principally injective monoid is given in terms of its annihilator. The relationship between the following concepts is also studied; closed quasi principally injective acts over monoids, Hopfian, co Hopfian, and directly finite property. Ultimately, based on
... Show MoreBackground: Schneiderian first rank symptoms are
considered highly valuable in the diagnosis of
schneideria.
They are more evident in the acute phase of the
disorder and fading gradually with time. Many studies
have shown that the rate of these symptoms are
variable in different countries and are colored by
cultural beliefs and values.
Objectives: To find out the rate of Schneiderian first
rank symptoms among newly diagnosed schizophrenic
patients, to assess which symptom(s) might
predominate in those patients, and to find out if there
is/are any correlation(s) between the occurrence of
these symptoms and the sex of the patients.
Methods: Out of twenty-four patients with no past
psychiatric hi