Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
The role of relaxation program for reducing anxiety of patients in dental clinic
The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreThe problem of the research lies in the lack of standard levels for modern administration as a guide for evaluating weaknesses and strengths as well as finding solutions. The aim of the research lies in identifying standard levels for modern administration in Iraqi central Olympic committee and international federations. The subjects were (24) Olympic committee' federations. All procedures were standardized to fit our modern administration work. The data was collected and treated using proper statistical operations. The researcher concluded standard levels for modern administration in international federation of the Iraqi Olympic committee, in addition to that he concluded that most administrations levels ranged within four levels (good, fa
... Show Moreلا يزال المهتمون بلعبة كرة السلة يبحثون عن إيجاد الوسائل الأكثر أهمية وصولاً إلى ما تطمح إليه الدول لتحقيق افضل المستويات في نواحي اللعبة كافة من خلال التغلب على المعوقات التي تحول دون تقدمها إلى الأمام بالدراسة والبحث. ومن هذا المنطلق انصب البحث في ضرورة معالجة القصور الناتج عن عدم وجود المستويات المعيارية ذات العلاقة باختبارات قدرات اللاعبين وعلى وفق مراكز اللعب ولا سيما المهارية الهجومية، ومما شكل ذلك ضع
... Show MoreBackground: Listeria monocytogenes, a member of the genus Listeria, is widely distributed in agricultural environments, such as soil, manure and water. The genus of Listeria bacteria is about 15-17 species. It is a pathogenic bacterium that can cause a rare but dangerous infection called listeriosis.
Objectives: Studying the rate of salads contaminated with Listeria bacteria. and Listeria monocytogenes according to International, Arabic and Iraqi specifications and finding the correlation between commitments of restaurants to standard health conditions with contamination with these bacteria
Methods: The study included
... Show MoreIn this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p
... Show MoreRecently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreThis research includes the using of statistical to improve the quality of can plastics which is produced at the state company for Vegetable oils (Almaamon factory ) by using the percentage defective control chart ( p-chart ) of a fixed sample. A sample of size (450) cans daily for (30) days was selected to determine the rejected product . Operations research with a (win QSB ) package for ( p-chart ) was used to determine test quality level required for product specification to justify that the process that is statistically controlled.
The results show high degree of accuracy by using the program and the mathematical operations (primary and secondary ) which used to draw the control limits charts and to reject the statistically uncontr
The haplotype association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease.Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls.It starts with inferring haplotypes from genotypes followed by a haplotype co-classification and marginal screening for disease-associated haplotypes.Unfortunately,phasing uncertainty may have a strong effects on the haplotype co-classification and therefore on the accuracy of predicting risk haplotypes.Here,to address the issue,we propose an alternative approach:In Stage 1,we select potential risk genotypes inste
... Show More