Preferred Language
Articles
/
0hZqeIkBVTCNdQwCvonF
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Current Pharmaceutical Analysis
Analytical Methods for the Identification of Pigments in Tattoo Inks and Some of Their Physiological Side Effects: A Review
...Show More Authors

In this review, numerous analytical methods to distinguish pigments in tattoo, paint, and ink items are discussed. The selection of a method was dependent upon the purpose, e.g., quantification or identification of pigments. The introductory part of this review focuses on describing the importance of setting up a pigment-associated safety profile. The formation of different degradation chemical substances as well as impurity trends can be indicated through the chemical investigation of pigments in tattoo products. It is noteworthy that pigment recognition in tattoo inks can work as a preliminary method to identify the pigments in a patient's tattoo before being removed by laser therapy. Contrary to the stud

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Mar 08 2022
Journal Name
Multimedia Tools And Applications
Comparison study on the performance of the multi classifiers with hybrid optimal features selection method for medical data diagnosis
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Useing the Hierarchical Cluster Analysis and Fuzzy Cluster Analysis Methods for Classification of Some Hospitals in Basra
...Show More Authors

In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A Technical Framework for Selection of Autonomous UAV Navigation Technologies and Sensors
...Show More Authors

View Publication
Scopus (29)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (61)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
A Novel Gravity ‎Optimization Algorithm for Extractive Arabic Text Summarization
...Show More Authors

 

An automatic text summarization system mimics how humans summarize by picking the most ‎significant sentences in a source text. However, the complexities of the Arabic language have become ‎challenging to obtain information quickly and effectively. The main disadvantage of the ‎traditional approaches is that they are strictly constrained (especially for the Arabic language) by the ‎accuracy of sentence feature ‎functions, weighting schemes, ‎and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Using Solid Waste as A Substitute for Raw Materials in Construction: A Review.
...Show More Authors

The main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative

... Show More
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Sensors
Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review
...Show More Authors

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Aip Conference Proceedings
Enhanced aerodynamics for sport cars using inverted wings: A comprehensive review
...Show More Authors

View Publication
Scopus Crossref