Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
Aluminum alloys widely use in production of the automobile and the aerospace because
they have low density, attractive mechanical properties with respect to their weight, better
corrosion and wear resistance, low thermal coefficient of expansion comparison with traditional
metals and alloys. Recently, researchers have shifted from single material to composite materials
to reduce weight and cost, improve quality, and high performance in structural materials.
Friction stir processing (FSP) has been successfully researched for manufacturing of metal
matrix composites (MMCs) and functional graded materials (FGMs), find out new possibilities
to chemically change the surfaces. It is shown th
The primary objective of the current paper is to suggest and implement effective computational methods (DECMs) to calculate analytic and approximate solutions to the nonlocal one-dimensional parabolic equation which is utilized to model specific real-world applications. The powerful and elegant methods that are used orthogonal basis functions to describe the solution as a double power series have been developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli polynomials. Hence, a specified partial differential equation is reduced to a system of linear algebraic equations that can be solved by using Mathematica®12. The techniques of effective computational methods (DECMs) have been applied to solve some s
... Show MoreIn our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show Moresummary
In this search, we examined the factorial experiments and the study of the significance of the main effects, the interaction of the factors and their simple effects by the F test (ANOVA) for analyze the data of the factorial experience. It is also known that the analysis of variance requires several assumptions to achieve them, Therefore, in case of violation of one of these conditions we conduct a transform to the data in order to match or achieve the conditions of analysis of variance, but it was noted that these transfers do not produce accurate results, so we resort to tests or non-parametric methods that work as a solution or alternative to the parametric tests , these method
... Show MorePorosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MoreThe equation of Kepler is used to solve different problems associated with celestial mechanics and the dynamics of the orbit. It is an exact explanation for the movement of any two bodies in space under the effect of gravity. This equation represents the body in space in terms of polar coordinates; thus, it can also specify the time required for the body to complete its period along the orbit around another body. This paper is a review for previously published papers related to solve Kepler’s equation and eccentric anomaly. It aims to collect and assess changed iterative initial values for eccentric anomaly for forty previous years. Those initial values are tested to select the finest one based on the number of iterations, as well as the
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show More—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when comb
... Show MoreInterest in belowground plant growth is increasing, especially in relation to arguments that shallow‐rooted cultivars are efficient at exploiting soil phosphorus while deep‐rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil‐filled rhizotrons, hydroponics and soil‐filled pots whose bottom was sealed with a non‐woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the Oryza
A theoretical study on corrosion inhibitors was done by quantum calculations includes semi-empirical PM3 and Density Functional Theory (DFT) methods based on B3LYP/6311++G (2d,2P). Benzimidazole derivative (oxo(4- ((phenylcarbamothioyl) carbamoyl)phenyl) ammonio) oxonium (4NBP) and thiourea derivative 2-((4- bromobenzyl)thio) -1H-benzo[d] imidazole (2SB) were used as corrosion inhibitors and an essential quantum chemical parameters correlated with inhibition efficiency, EHOMO (highest occupied molecular orbital energy) and ELUMO (lowest molecular orbital energy). Other parameters are also studied like energy gap [ΔE (HOMO-LUMO)], electron affinity (EA), hardness (Δ), dipole moment (μ), softness (S), ionization potential (IE), absolut
... Show More