Preferred Language
Articles
/
0hZDPYcBVTCNdQwCdj0B
Finite element modeling of concavely curved soffit RC beams externally strengthened with FRP
...Show More Authors

Crossref
View Publication
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Finite Element Analysis for the Damaged Rotating Composite Blade
...Show More Authors

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to ap

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Plain Concrete Beam Analyzed Using Extended Finite Element Method
...Show More Authors

In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr

... Show More
Crossref
Publication Date
Thu Dec 24 2020
Journal Name
Advances In Civil Engineering
Analytical study on torsional behavior of concrete beams strengthened with fiber reinforced polymer laminates using softened truss model
...Show More Authors

This study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t

... Show More
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu May 16 2019
Journal Name
Al-khwarizmi Engineering Journal
Study of Transverse and Longitudinal Crack Propagation in Human Bone Using the Finite Element Method with MATLAB
...Show More Authors

A finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.

View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Effect of Transverse Internal Ribs on Shear Strength Evaluation of Hollow RC Beams
...Show More Authors

This paper is devoted to investigate experimentally and theoretically the structural behavior of reinforced concrete hollow beams which have internal transverse ribs under effect of shear. The number of the internal ribs is the major variable adopted in this research, while, the other variables are kept constant for all tested specimens. The experimental part includes poured and test of four (200x300x1200mm) beam specimens, three of these specimens were hollow with different locations of internal ribs and one of them was solid. The experimental results indicated that the shear strength are increased (33%) to (60%) for beams containing internal ribs in comparison with reference beam. Also, the change of beam state from ho

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 11 2017
Journal Name
Journal Of Engineering
Thermo Elastic Analysis of Carbon Nanotube-Reinforced Composite Cylinder Utilizing Finite Element Method with the Theory of Elasticity
...Show More Authors

  

View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Optics & Laser Technology
Finite element thermal analysis for PMMA/st.st.304 laser direct joining
...Show More Authors

This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process par

... Show More
View Publication
Scopus (43)
Crossref (39)
Scopus Clarivate Crossref
Publication Date
Mon Oct 21 2019
Journal Name
Civil Engineering Journal
Non-Smooth Behavior of Reinforced Concrete Beam Using Extended Finite Element Method
...Show More Authors

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Fiber Reinforced Concrete Pavement under Dynamic Loading
...Show More Authors

The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology & Applied Science Research
A Numerical Study of Concrete Composite Circular Columns encased with GFRP I-Section using the Finite Element Method
...Show More Authors

This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation

... Show More
View Publication
Scopus Crossref