The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
An experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge co
... Show MoreA new methodology was applied to the synthesis of new imidazolones and oxyazepine derivatives containing imidazo thiazole fused rings. Starting with 5-(4-bromo phenyl) imidazo (2, 1-b) thiazole, which was synthesized using the standard procedure, the Carbaldehyed group was introduced at position 6 of 5-(4-bromo phenyl) imidazo (2, 1-b) thiazole. Then, this 6-carbaldehyed derivative was condensed with different substituted aromatic amines to afford new Schiff bases. The latter were cyclized into new oxazepine and imidazolone derivatives by using phthalic anhydride and glycine, respectively. These new derivatives were characterized by using FT-IR, 1HHNMR, and 13CNMR spectra, as well as examined (evaluated) for anti-bacterial and anti-fungal a
... Show MoreIn this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreObjectives: to evaluate patient knowledge with hemodialysis and to determine the effectiveness of Self-regulation Fluid Program on Patients with hemodialysis self-efficacy for fluid adherence in Al-Diwaniyah Teaching Hospital.
Methodology: A quasi-experimental design (two group design: pre-test and post-test) was used. This study was conducted in Al-Diwaniya Teaching Hospital for the period from (15th of October 2018 to 20th of May 2019) on a non-probability (purposive) sample consisting of (60 patients) treatment in hemodialysis units. A questionnaire was built as a data collection tool and consisted of four parts:
First part: Demographic characteristics of the pati
... Show MoreThis paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and ampliï¬cation error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientiï¬c literature.
This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show More