The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
The purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
We propose a new object tracking model for two degrees of freedom mechanism. Our model uses a reverse projection from a camera plane to a world plane. Here, the model takes advantage of optic flow technique by re-projecting the flow vectors from the image space into world space. A pan-tilt (PT) mounting system is used to verify the performance of our model and maintain the tracked object within a region of interest (ROI). This system contains two servo motors to enable a webcam rotating along PT axes. The PT rotation angles are estimated based on a rigid transformation of the the optic flow vectors in which an idealized translation matrix followed by two rotational matrices around PT axes are used. Our model was tested and evaluated
... Show MoreIn this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreThe coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
ABSTRACT Background: Viral hepatitis places a heavy burden on the health care. Large number of patient with bleeding disorders has chronic hepatitis C infection, while few are chronic carriers of hepatitis B virus. Aims of study: evaluate the prevalence of HBV, HCV infection among patient with Von Willebrand disease and to find factors that associated with the chance of getting the infection.