Preferred Language
Articles
/
0UI2KJsBMeyNPGM3A9fW
From data to decision: How wearable plant sensors help improving proactive irrigation strategies and water use efficiency
...Show More Authors

Wearable sensors are a revolutionary tool in agriculture because they collect accurate data on plant environmental conditions that affect plant growth in real-time. Moreover, this technology is crucial in increasing agricultural sustainability and productivity by improving irrigation strategies and water resource management. This review examines the role of wearable sensors in measuring plant water content, leaf and air humidity, stem flow, plant and air temperature, light, and soil moisture sensors. Wearable sensors are designed to monitor various plant physiological parameters in real-time. These data, obtained through wearable sensors, provide information on plant water use and physiology, making our agricultural choices more informed and accurate. Internet of Things (IoT) technologies can improve irrigation strategies and reduce water consumption by analyzing data from wearable sensors and adapting it to automate the irrigation system. The review also highlights the importance of using Artificial Intelligence (AI) to predict plant water needs accurately. This review concludes that wearable sensors provide accurate and real-time data on the stress state of plants and their surroundings, improving water management efficiency and agricultural production sustainability. These IOT and AI-enabled technologies are a crucial milestone toward smart and sustainable agriculture, which shows the importance of innovation in responding to enhanced climate threats.

Crossref
View Publication
Publication Date
Thu Apr 06 2023
Journal Name
Materials Science Forum
Study of the Effect of Ce <sup>3+</sup> on the Gas Sensitivity and Magnetic Properties of Cu<sub>x</sub>Ce<sub>0.3-X</sub>Ni<sub>0.7</sub>Fe<sub>2</sub>O<sub>4</sub> Ferrite Nanoparticles
...Show More Authors

This study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Crossref