Preferred Language
Articles
/
0RidoJcBVTCNdQwCjJln
Classification of Apple Slices Treated by Atmospheric Plasma Jet for Post-harvest Processes Using Image Processing and Convolutional Neural Networks
...Show More Authors
Abstract<p>Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices using the k-Nearest Neighbors (KNN), Tree, Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms. The results showed an inverse relationship between the storage period and the hardness of the apple slices, with the average hardness values gradually decreasing from 4.33 (day 1) to 3.37 (day 5). Treatment with atmospheric plasma at a pressure of 5 atm and an immersion time of 3 min gave the best results for maintaining the hardness of the slices during the storage period, recording values of 4.85 (first day) and 3.68 (fifth day), outperforming other treatments. The average improvement rate was 23.09% over five consecutive days. Regarding the CNN algorithms, the ANN algorithm achieved the highest classification accuracy of 97%, while the Tree algorithm achieved the lowest accuracy of 88.7%. The KNN and SVM algorithms achieved classification accuracies of 94.7% and 95.1%, respectively. The study demonstrated the possibility of using a CNN to classify apple slices based on the degree of hardness. Furthermore, the application of atmospheric plasma at 5 atmospheres with a 3-min immersion improves the firmness of the apple slices by inhibiting degradative enzymes while preserving the cellular structure and tissue quality.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jul 15 2024
Journal Name
2024 46th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Stability of Back Propagation Training Algorithm for Neural Networks
...Show More Authors

In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 03 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison of some artificial neural networks for graduate students
...Show More Authors

Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
The effect of the cold atmospheric plasma on the number of platelets
...Show More Authors

This study includes the direct influence of (single & multi) dose of Cold Atmospheric Plasma (CAP) on the no. of platelets for mice for different exposure time (15, 30, 60, and 120) sec. the influence of CAP on mice was measured after 1, 2, 3, 7, and 14 day from exposure.
The results obtained in this study indicate that the effect of low doses of CAP on platelets was stimulatory effect in the first few hours from exposure (1day) but the high dose was inhibitory, It was found that after two weeks of exposure that the number of platelets became normal comparable to the control one, and this indicates that plasma effect was removed after this period.

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Satellite image classification using proposed singular value decomposition method
...Show More Authors

In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref