Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices using the k-Nearest Neighbors (KNN), Tree, Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms. The results showed an inverse relationship between the storage period and the hardness of the apple slices, with the average hardness values gradually decreasing from 4.33 (day 1) to 3.37 (day 5). Treatment with atmospheric plasma at a pressure of 5 atm and an immersion time of 3 min gave the best results for maintaining the hardness of the slices during the storage period, recording values of 4.85 (first day) and 3.68 (fifth day), outperforming other treatments. The average improvement rate was 23.09% over five consecutive days. Regarding the CNN algorithms, the ANN algorithm achieved the highest classification accuracy of 97%, while the Tree algorithm achieved the lowest accuracy of 88.7%. The KNN and SVM algorithms achieved classification accuracies of 94.7% and 95.1%, respectively. The study demonstrated the possibility of using a CNN to classify apple slices based on the degree of hardness. Furthermore, the application of atmospheric plasma at 5 atmospheres with a 3-min immersion improves the firmness of the apple slices by inhibiting degradative enzymes while preserving the cellular structure and tissue quality.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MoreThe lowest layer of the atmosphere is called the atmospheric mixed layer, characterized by small-scale, irregular air motions defined by winds that change in speed and direction. Aerosol radiative effects impact the atmospheric boundary layer (ABL), which holds most aerosols in the lower atmosphere. Aerosol absorption and scattering both lower the quantity of solar energy that reaches the ground, which has an impact on the spectral signature of the land coverings. In this study, 51 locations in downtown Baghdad were chosen for four different types of land cover (water bodies, farms, open areas, and residential areas) for Sentinel 2 satellite imagery, and the time the pictures were taken was 8:00 am ( 22 March, 22 June, 20 September,
... Show MoreNeural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved t
... Show MoreIn this paper Zener diode was manufactured using ZnO-CuO-ZnO/Si heterojunction structure that used laser induced plasma technique to prepare the nanofilms. Six samples were prepared with a different number of laser pulses, started with 200 to 600 pulses on ZnO tablet with fixed the number of laser pulses on CuO tablet at 300 pulses. The pulse energy of laser deposited was 900mJ using ZnO tablet and 600mJ using CuO tablet. All prepared films shown good behavior as Zener diode when using porous silicon as substrate.