Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices using the k-Nearest Neighbors (KNN), Tree, Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms. The results showed an inverse relationship between the storage period and the hardness of the apple slices, with the average hardness values gradually decreasing from 4.33 (day 1) to 3.37 (day 5). Treatment with atmospheric plasma at a pressure of 5 atm and an immersion time of 3 min gave the best results for maintaining the hardness of the slices during the storage period, recording values of 4.85 (first day) and 3.68 (fifth day), outperforming other treatments. The average improvement rate was 23.09% over five consecutive days. Regarding the CNN algorithms, the ANN algorithm achieved the highest classification accuracy of 97%, while the Tree algorithm achieved the lowest accuracy of 88.7%. The KNN and SVM algorithms achieved classification accuracies of 94.7% and 95.1%, respectively. The study demonstrated the possibility of using a CNN to classify apple slices based on the degree of hardness. Furthermore, the application of atmospheric plasma at 5 atmospheres with a 3-min immersion improves the firmness of the apple slices by inhibiting degradative enzymes while preserving the cellular structure and tissue quality.
One of the most important challenges facing the development of laser weapons is represented by the attenuation of the laser beam as it passed through the layers of atmosphere.This paper presents a theoretical study to simulate the effect of turbulence attenuation and calculates the decrease of laser power in Iraq. The refractive index structure C_n^2 is very important parameter to measure the strength of the atmospheric turbulence, which is affected by microclimate conditions, propagation path, season and time in the day. The results of measurements and predictions are based on the Kolmogorov turbulence theory. It was demonstrated by simulations that the laser weapons in Iraq were severely affected due to the large change in temperatures,
... Show MoreFluorescence excitation by Nd:YAG pumped dye laser and single vibrational level fluorescence
spectra of 1,3 benzodioxole in a supersonic jet have been obtained and interpreted. The previous assignment of
the 0 0
0 band was incorrect. In addition, many other bands involving n20 and n19 vibrations of a2 symmetry were
confirmed. As far as a1 totally symmetric vibration is concerned. The n14 was assigned to be located in the fivemembered
ring whereas n13 seem to be located in the benzene ring as a result of the electronic transition in the
benzene ring which affects n13 and not n14 wavenumber.
A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show More
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreBy- products of corn starch industry were used to prepare media for propagation the lactic acid bacteria as a natural auxotroph. The by- products used were the corn steep water (S) and gluten extract (G) after a proper treatment to get them ready for media preparation. The results showed that it was possible to replace the peptone and meat extract by gluten extract in MRS medium. The growth was approximately similar to that obtained in standard MRS media. Corn steep water (S) was used as well and the growth enhanced by including Tween – 80 at 1% level. The later media named MZ, which was superior for growing standard and local strains and starters. The MZ medium modified by adding acetate and glacial acetic acid similarly to
... Show More