Preferred Language
Articles
/
0RidoJcBVTCNdQwCjJln
Classification of Apple Slices Treated by Atmospheric Plasma Jet for Post-harvest Processes Using Image Processing and Convolutional Neural Networks
...Show More Authors
Abstract<p>Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices using the k-Nearest Neighbors (KNN), Tree, Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms. The results showed an inverse relationship between the storage period and the hardness of the apple slices, with the average hardness values gradually decreasing from 4.33 (day 1) to 3.37 (day 5). Treatment with atmospheric plasma at a pressure of 5 atm and an immersion time of 3 min gave the best results for maintaining the hardness of the slices during the storage period, recording values of 4.85 (first day) and 3.68 (fifth day), outperforming other treatments. The average improvement rate was 23.09% over five consecutive days. Regarding the CNN algorithms, the ANN algorithm achieved the highest classification accuracy of 97%, while the Tree algorithm achieved the lowest accuracy of 88.7%. The KNN and SVM algorithms achieved classification accuracies of 94.7% and 95.1%, respectively. The study demonstrated the possibility of using a CNN to classify apple slices based on the degree of hardness. Furthermore, the application of atmospheric plasma at 5 atmospheres with a 3-min immersion improves the firmness of the apple slices by inhibiting degradative enzymes while preserving the cellular structure and tissue quality.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
On Training Of Feed Forward Neural Networks
...Show More Authors

In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.

View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Advances In Computing
A New Abnormality Detection Approach for T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes
...Show More Authors

Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conference Proceedings
The influence of cold atmospheric pressure plasma on TSH and thyroid hormones in male rats
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Estimating Pitting Corrosion Depth and Density on Carbon Steel (C-4130) using Artificial Neural Networks
...Show More Authors

The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 22 2025
Journal Name
Bulgarian Journal Of Agricultural Science
The economic impacts of the post-harvest losses of tangerines and Seville oranges crops in Iraq (Baghdad Governorate: As a case study)
...Show More Authors

This study aims to calculate the percentage of loss and its causes of the horticultural crops tangerines and Seville oranges in Baghdad governorate for the 2020 agricultural season and estimate the economic impacts of losses both crops tangerines and Seville oranges at the study samples level. The research followed both methods descriptive and the quantitative mathematical in estimating the loss of horticultural crops from tangerines and Seville oranges trees and calculating the economic impact of this loss. The results showed that the percentage of losses of tangerines and Seville oranges crops on the level of wholesalers was about 12% and 13% respectively; causing economic losses estimated at about 3184.41 Euro. The results also displayed

... Show More
View Publication Preview PDF
Scopus Clarivate
Publication Date
Wed Oct 17 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
ESTIMATION OF MUNICIPAL SOLID WASTE GENERATION AND LANDFILL VOLUME GENERATION AND LANDFILL VOLUME USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More