This work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern within columnar grains. A significant increase in the nitride layer thickness (34.4 µm) was achieved for X155 compared to AISI 316L and steel 37. Also, Gas nitriding caused a significant increase in hardness at the first stage for X 155 tool steel and AISI316L steel with hardness percentage enhancement of 0.87%(655HV) and 0.28% (219HV) respectively, while for steel37 samples the hardness reached its maximum value of 340HV for the second nitriding stage with hardness percentage enhancement of 0.78%. There was no significant improvement in surface hardness after second nitriding stages for X155 and AISI 316L steels. The effects of time and gas flow rate during the process were particularly evident on hardness values, especially after the first stage.
The present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst ty
... Show MoreA variety of single-engine driven files and inematics have been introduced to improve the clinical performance of NiTi rotary files. The purpose of this in vitro study was to measure and compare the incidence of dentinal defects after root canal preparation with different single file systems.
Osteoporosis is a systemic disease of the skeleton, characterized by low bone mass and alteration in the micro-architecture of the bone tissue that lead to an increase in brittleness with the ensuing predisposition to bone fracture. Global statistics shows that women are more exposed to this disease than men and in particular at menopause. This study was designed to evaluate the use of some bone markers: serum osteocalcin (Ost), alkaline phosphatase (ALP), as bone formation markers, also parathyroid hormone (PTH), calcium and inorganic phosphate level, for the assessment of patients with osteoporosis and to evaluate their role in monitoring of several types of therapeutic interventions (such as bisphosphonates, hormonal replacement thera
... Show MoreSurface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely
... Show MoreQuantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.
Light has already becomes a popular means of communication, and the high-bandwidth data into free space without the use of wires. A great idea took us to design a new system for transmitting sound through free space at (650, 532) nm wavelengths using reflective mirrors under different atmospheric conditions. The study showed us the effect of various weather factors (temperature, wind speed and humidity) on these wavelengths for different distances. As well as studying the attenuation caused by long-distance laser and beam divergence, A reflective dish was used to focus the spot of the laser beam on the photocell. Results were discussed under the effect of these factors and the attenuation resulting from the beam divergence. Thus, the sys
... Show MoreBackground: preparation of root canals is an important step in root canal treatment. Mechanical instrumentation of root canals cause an irregular layer of debris, known as the smear layer. As a result, several studies reported that preferring the removal of the smear layer. Objective: To study the influence of the energy (100 mJ) of Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser at short pulse duration (60 μs) on smear layer removal of apical third after using Photon induced photoacoustic streaming technique. Materials and methods: Eighteen straight single-rooted mandibular premolars were used. The roots length were uniform to 14mm from the anatomic apex and
... Show MoreFinding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith
... Show More