This work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern within columnar grains. A significant increase in the nitride layer thickness (34.4 µm) was achieved for X155 compared to AISI 316L and steel 37. Also, Gas nitriding caused a significant increase in hardness at the first stage for X 155 tool steel and AISI316L steel with hardness percentage enhancement of 0.87%(655HV) and 0.28% (219HV) respectively, while for steel37 samples the hardness reached its maximum value of 340HV for the second nitriding stage with hardness percentage enhancement of 0.78%. There was no significant improvement in surface hardness after second nitriding stages for X155 and AISI 316L steels. The effects of time and gas flow rate during the process were particularly evident on hardness values, especially after the first stage.
Witnessing the global arena many changes in the political, economic, social, scientific and technological have left their mark on the world as a whole, these changes require necessarily Advancement of the profession of auditing, and improve their performance, especially after the mixer skepticism the health of approach and the method followed by a check in the major audit firms global view as for the external audit of an active role in providing services to members of the community in various sectors, were to be provide these services to the highest level of quality.To ensure the quality of the audit process to be a proper planning is based on a scientific basis to be the substrate a strong underlying different audit works, and if planni
... Show MoreIn this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics
This presented study is to make comparison of cross sections to produce 71As, 72As, 73As and 74As via different reactions with particle incident energy up to 60 MeV of alpha 100 MeV of proton as a part of systematic studies on particle-induced activations on enriched Ge, Ga, Rb and Nb targets and neutron capture. Theoretical calculation of production yield, and suggestion of optimum reaction to produce 71As, 72As, 73As and 74As, based on the main published and approved experimental results of excitation functions were calculated.
The goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed
