Background: Rheumatoid arthritis (RA) is an autoimmune disorder that involves autoantibodies attacking and weakening joints. RA is characterized by leukocyte (Monocyte, Lymphocyte mast cell .etc) infiltrations into the synovial compartment leading to inflammation in the synovial membrane. Synovitis leads to the release of pro-inflammatory cytokines, matrix metalloproteinases, chemokines, complement proteins, and growth factors. Objective: The current study pointed to verify the diagnostic values of interleukin -17 A and interleukin -18 in Rheumatoid arthritis (RA) patients and the effect of treatment thereon. Study subjects and methods: A total of 88 samples with RA were selected from the health clinics of AL-Yarmouk teaching hospital/rheumatology clinic in Baghdad, with female rheumatoid arthritis patients as the patient group (50) and (38) healthy females as the control group. All patients were exposed to clinical, laboratory, and ultrasound assessments, besides measuring the serum level of both (IL-17A and IL-18) by the method of Enzyme-linked immunosorbent assay (ELISA). Results: The results show that there is a significant difference (p≤0.05) in IL-17A levels between patients and controls. The concentration of IL-17A in premenopausal patients is higher when compared to control groups (18.06 ± 3.85 vs 15.71 ± 1.82 pg/ml), so, the concentration in postmenopausal studied groups (17.19 ± 2.91 vs 14.13 ± 1.06 pg/ml). Also, there are significant differences (p≤0.05) in the level of IL-18 between the patients and the control; it is found that the level of IL-18 within the premenopausal patients was higher compared to the control (16.09 ± 9.69 vs 12.52 ± 8.30 pg/ml). Conclusion: A High level of IL-17A in RA patients contributes to the pathogenesis of RA as an inflammatory disease. As well as, the elevated levels of IL-18 suggest its physiological role to induce inflammatory disorder Treatment with (MTX and Etanercept) causes a decrease in the inflammatory markers of this disease RF in patient groups.
This study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
Catalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigne
... Show MoreBy optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreMethylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilize
... Show MoreIn this paper, Al and Cu Plasmas that produced by pulsed Nd:YAG laser with fundamental wave length with a pulse duration of 6 nS focused onto Al and Cu targets in atmospheric air are investigated spectroscopically. The influence of pulse laser energy on the some Al and Cu plasmas characteristics was diagnosed by using optical emission spectroscopy for the wavelength range 320-740 nm. The results observed that the increase of pulse laser energy causes to increase all plasma characteristics of both plasmas under study and shown increasing of the emission line intensity. The appearance of the atomic and ionic emission lines of an element in the emission spectrum depends on the ionization energy of target atoms. The plasma characteristics ar
... Show MoreNitrogen dioxide NO2 is one of the most dangerous contaminant in the air, its toxic gas that cause disturbing respiratory effects, most of it emitted from industrial sources especially from the stack of power plants and oil refineries. In this study Gaussian equations modelled by Matlab program to state the effect of pollutant NO2 gas on area around Durra refinery, this program also evaluate some elements such as wind and stability and its effect on stacks height. Data used in this study is the amount of fuel oil and fuel gas burn inside refinery at a year 2017. Hourly April month data chosen as a case study because it’s unsteady month. After evaluate emission rate of the all fuel and calculate exit velocity from
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show More