The present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K (50% RR). Moreover, the peak pressure was improved from 3659073 Pa to 4525366 pa (23% increase), 4947790 pa (35% increase), 5929709Pa (62% increase) and 6708188 Pa (83%) for diesel fuel mode and dual fuel mode (20%, 30%, 40% and 50%) respectively. Moreover, CO, NO, and CO2 emissions in the engine increased with the increase in syngas’ replacement ratio with diesel. Besides, the emission levels of NO, CO2 and CO from a diesel engine are lower than a dual fuel engine (syngas-diesel). The NO mass fraction values rise from 2.02505E-19 at diesel mode to 0.000834126 (20% RR), 0.004176854 (30% RR), 0.005021933 (40% RR) and 0.007554865 (50% RR). Moreover, the CO2 mass fraction values increase from 5.90944E-07 at diesel mode to 0.033849446 (50% RR).
The research problem can be summarized through focusing on the environment that surrounds students and class congestion, how these factors affect directly or indirectly the academic achievement of students, how these factors affect understanding the scientific material that the student receives in this physical environment, how classroom’s components such as seats, space With which the student can move, the number of students in the same class, the lighting, whether natural or artificial, and is this lighting sufficient or not enough, the nature of the wall paint old or modern, is it comfortable for sight, the blackboard if it is Good or exhausted, In addition to air-conditioning sets in summer and winter, this is on the on
... Show MoreCopper doped Zinc oxide and (n-ZnO / p-Si and n-ZnO: Cu / p-Si) thin films thru thickness (400±20) nm were deposited by thermal evaporation technique onto two substrates. The influence of different Cu percentages (1%,3% and 5%) on ZnO thin film besides hetero junction (ZnO / Si) characteristics were investigated, with X-ray diffractions examination supports ZnO films were poly crystal then hexagonal structural per crystallite size increase from (22.34 to 28.09) nm with increasing Cu ratio. The optical properties display exceptional optically absorptive for 5% Cu dopant with reduced for optically gaps since 3.1 toward 2.7 eV. Hall Effect measurements presented with all films prepared pure and doped have n-types conductive, with a ma
... Show MoreThree different types of nozzles (different wear rate) were used in this study. They are classified depending on the severity of their wear to three groups: new, worn and damaged nozzles. Those nozzles were spraying with the same application rate (303 l/ha) on two-year field trials; this was achieved by changing the spraying pressure for each group of nozzles in order to get the same application rate. This practice is usually done by operators of sprayers, who calibrate the sprayers on the same application rate every year without changing the nozzles, so they tend to reduce the spraying pressure in order to compensate the flow rate increase due to the nozzles yearly wear. Two types of
This research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
Football is one of the most important team sports, practiced by men and women, young and old, across various age groups. The physical development in this sport can be attributed to athletic training and modern technology, which have contributed significantly to advancing the sports field in general. Outstanding performance in football requires precise and quick physical abilities, closely tied to the competitive nature of the game. Speed is fundamental in football, making the use of technologies such as GPS tracking devices and heart rate monitors essential in both training and matches. This study aims to develop the speed of Al-Talaba SC players in Baghdad using a scientifically-based approach to improve their performance. The impo
... Show More