Directional control valve is the main part in hydraulic system which has complex construction, such as moving spool to control the direction of actuator for required speed. Utilizing MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper dedicates the experimental test of four ways, three position MR directional control valve. The experimental methods were done by connecting the MR directional control valve with hydraulic actuators. The experiment was conducted to show the principle work of the valve functionally and performance test for valve was done. The valve works proportionally to control the direction and speed of hydraulic actuators. As a result, the experimental result demonstrates the operation of MR directional control valve using two configurations. The experimental about ON-OFF and proportional operations is discussed. The MR directional control valve can replace many types of the spool directional control valve for controlling hydraulic actuator.
Background: It is important to achieve good glycemic control to avoid long-term diabetic complications. It has been largely debated about the role of correct way of insulin administration to get the desired glycemic control.
Objective: To evaluate the effect of teaching diabetic patients who are on insulin therapy the correct way of injecting insulin and its effect on glycemic control.
Methods: A non randomized clinical trial with 820 diabetic patients on insulin therapy on whom A1 c estimation was performed before and after three months of teaching them the right injection technique.
Results : Sixty seven patients (8.17%) had A1 c 6.5% before they were enrolled in the study while the majority (753 patents, 91.82%) had A1 c 6.5%
The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin
... Show MoreObjective(s): To evaluate nurses' practices who work in respiratory intensive care units to control the
complications of patients admitted at this unit and determine the relationship between nurses' sociodemographic
characteristics and their practices.
Methodology: A descriptive study was carried out at Respiratory Care Unit at Baghdad teaching hospitals that
started from February 22th, 2013 to August 30th, 2013. A purposive "non-probability" sample of (70) nurses who
work in Respiratory Care Unit was selected from Baghdad teaching hospitals. The data were collected through the
use of constructed questionnaire that consists of two parts; (l) Demographic data form that consists of 7items and
(2) nurses' practice form
Abstract
The current research aims to identify the attitudes towards the Covid-19 vaccine and the Locus of Control (internal, external) among university students, to identify the significance of the difference in attitudes towards the Covid-19 vaccine, the significance of the difference in the Locus of Control (internal, external) according to the gender variable (male, female), and to identify the significance of the difference in students’ attitudes towards Covid-19 vaccine according to the Locus of Control (internal, external). To achieve the objective of the research, the researcher developed two scales, a scale of (20) items to identify the attitudes toward a covid-19 vaccine, and a scale of the locus of c
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreThis study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse
... Show MoreThe current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale p
... Show MoreAbstract. This study presents experimental and numerical investigation on the effectiveness of electrode geometry on flushing and debris removal in Electrical Discharge Drilling (EDD) process. A new electrode geometry, namely side-cut electrode, was designed and manufactured based on circular electrode geometry. Several drilling operations were performed on stainless steel 304 using rotary tubular electrodes with circular and side-cut geometries. Drilling performance was characterized by Material Removal Rate (MRR), Electrode Wear Rate (EWR), and Tool Wear Ratio (TWR). Dimensional features and surface quality of drilled holes were evaluated based on Overcut (OC), Hole Depth (HD), and Surface Roughness (SR). Three-dimensional
... Show More