Objectives To assess the feasibility and accuracy of a new prototype robotic implant system for the placement of zygomatic implants in edentulous maxillary models. Methods The study was carried out on eight plastic models. Cone beam computed tomographs were captured for each model to plan the positions of zygomatic implants. The hand-eye calibration technique was used to register the dynamic navigation system to the robotic spaces. A total of 16 zygomatic implants were placed, equally distributed between the anterior and the posterior parts of the zygoma. The placement of the implants (ZYGAN®, Southern Implants) was carried out using an active six-jointed robotic arm (UR3e, Universal Robots) guided by the dynamic navigation coordinate transformation matrix. The accuracy of the implant placement was assessed using EvaluNav and GeoMagicDesignX® software based on pre- and post-operative CBCT superimposition. Descriptive statistics for the implant deviations and Pearson's correlation analysis of these deviations to force feedback recorded by the robotic arm were conducted. Results The 3D deviations at the entry and exit points were 1.80 ± 0.96 mm and 2.80 ± 0.95 mm, respectively. The angular deviation was 1.74 ± 0.92°. The overall registration time was 23.8 ± 7.0 min for each side of the model. Operative time excluding registration was 66.8 ± 8.8 min for each trajectory. The exit point and angular deviations of the implants were positively correlated with the drilling force perpendicular to the long axis of the handpiece and negatively correlated with the drilling force parallel to the long axis of the handpiece. Conclusion The errors of the dynamic navigation-guided robotic placement of zygomatic implants were within the clinically acceptable limits. Further refinements are required to facilitate the clinical application of the tested integrated robotic-dynamic navigation system. Clinical significance Robotic placement of zygomatic implants has the potential to produce a highly predictable outcome irrespective of the operator's surgical experience or fatigue. The presented study paves the way for clinical applications.
The long-term monitoring of land movements represents the most successful application of the Global Navigation Satellite System (GNSS), particularly the Global Positioning System. However, the application of long term monitoring of land movements depends on the availability of homogenous and consistent daily position time series of stations over a period of time. Such time series can be produced very efficiently by using Precise Point Positioning and Double Difference techniques based on particular sophisticated GNSS processing softwares. Nonetheless, these rely on the availability of GNSS products which are precise satellite orbit and clock, and Earth orientation parameters. Unfortunately, several changes and modifications have been mad
... Show MoreUtilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show More<span lang="EN-US">Proper employment of Hybrid Wind/ PV system is often implemented near the load, and it is linked with the grid to study dynamic stability analysis. Generally, instability is because of sudden load demand variant and variant in renewable sources generation. As well as, weather variation creates several factors that affect the operation of the integrated hybrid system. So this paper introduces output result of a PV /wind via power electronic technique; DC chopper; that is linked to Iraqi power system to promote the facilitating achievement of Wind/ PV voltage. Moreover, PSS/E is used to study dynamic power stability for hybrid system which is attached to an effective region of Iraqi Network. The hybrid system
... Show MoreThere are many reasons made Basra a good defense, first of all was the
establishment of the famous Arab tribes, like Bakir bn. Wail and Tamim. Besides there were
A lot the armed forces. In addition to that the strategic place of Basra. All these reasons
played a good part when the war broke out.
The Arabic tribes played a good part in the war to engaged Persians, and prevent
them from sending any helps to their armies against the Kufain who were fighting Persians in
the North of Iraq. While the Basrain army aiming to Conquer the south of Iraq.
Basra become the first strategic place for the Islamic movement of the conquers.
Latter on Kufa and Bahrain were the second and third.
The Muslims guranted the pupils of
Abstract:
Rabi’a tribe lived on the land of Euphrates since the first century of the
Christ. Then that land becomes her homeland. The Persians tried many times
to drive her away from that land, but with out result.
In the course of time Rabi’a become more knowledgeable of Persia.
This tribe proved her love and sanctification to the land of Euphrates, in the
battle of Dhyqar.
Rabi’a converted to Islam quickly and helped the Muslims to conquer
Iraq with a big number of fighters in many battles like al- Qadisyyah. That
influenced the anger of Mudriat Arab tribes who were their old enemies.
Mudriat tribes did their efforts to reduce the importance of Rabi’a because of
some its branches were among of t
Nowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control s
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreKinematics is the mechanics branch which dealswith the movement of the bodies without taking the force into account. In robots, the forward kinematics and inverse kinematics are important in determining the position and orientation of the end-effector to perform multi-tasks. This paper presented the inverse kinematics analysis for a 5 DOF robotic arm using the robotics toolbox of MATLAB and the Denavit-Hartenberg (D-H) parameters were used to represent the links and joints of the robotic arm. A geometric approach was used in the inverse kinematics solution to determine the joints angles of the robotic arm and the path of the robotic arm was divided into successive lines to accomplish the required tasks of the robotic arm.Therefore, this
... Show More