Objectives To assess the feasibility and accuracy of a new prototype robotic implant system for the placement of zygomatic implants in edentulous maxillary models. Methods The study was carried out on eight plastic models. Cone beam computed tomographs were captured for each model to plan the positions of zygomatic implants. The hand-eye calibration technique was used to register the dynamic navigation system to the robotic spaces. A total of 16 zygomatic implants were placed, equally distributed between the anterior and the posterior parts of the zygoma. The placement of the implants (ZYGAN®, Southern Implants) was carried out using an active six-jointed robotic arm (UR3e, Universal Robots) guided by the dynamic navigation coordinate transformation matrix. The accuracy of the implant placement was assessed using EvaluNav and GeoMagicDesignX® software based on pre- and post-operative CBCT superimposition. Descriptive statistics for the implant deviations and Pearson's correlation analysis of these deviations to force feedback recorded by the robotic arm were conducted. Results The 3D deviations at the entry and exit points were 1.80 ± 0.96 mm and 2.80 ± 0.95 mm, respectively. The angular deviation was 1.74 ± 0.92°. The overall registration time was 23.8 ± 7.0 min for each side of the model. Operative time excluding registration was 66.8 ± 8.8 min for each trajectory. The exit point and angular deviations of the implants were positively correlated with the drilling force perpendicular to the long axis of the handpiece and negatively correlated with the drilling force parallel to the long axis of the handpiece. Conclusion The errors of the dynamic navigation-guided robotic placement of zygomatic implants were within the clinically acceptable limits. Further refinements are required to facilitate the clinical application of the tested integrated robotic-dynamic navigation system. Clinical significance Robotic placement of zygomatic implants has the potential to produce a highly predictable outcome irrespective of the operator's surgical experience or fatigue. The presented study paves the way for clinical applications.
In this paper, a dynamic investigation is done for strip, rectangular and square machine foundation at the top surface of two-layer dry sand with various states (i.e., loose on medium sand and dense on medium sand). The dynamic investigation is performed numerically using finite element programming, PLAXIS 3D. The soil is expected as a versatile totally plastic material that complies with the Mohr-Coulomb yield criterion. A harmonic load is applied at the base with an amplitude of 6 kPa at a frequency of (2 and 6) Hz, and seismic is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric study is done to evaluate the influence of changing L/B ratio (Length=12,6,3 m and width=3 m), type of sand
... Show MoreVirtual reality, VR, offers many benefits to technical education, including the delivery of information through multiple active channels, the addressing of different learning styles, and experiential-based learning. This paper presents work performed by the authors to apply VR to engineering education, in three broad project areas: virtual robotic learning, virtual mechatronics laboratory, and a virtual manufacturing platform. The first area provides guided exploration of domains otherwise inaccessible, such as the robotic cell components, robotic kinematics and work envelope. The second promotes mechatronics learning and guidance for new mechatronics engineers when dealing with robots in a safe and interactive manner. And the thir
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreBackground: Titanium implant is widely used in dentistry because of its extraordinary biocompatibility and mechanical properties. To increase bone–implant connection and provide early loading after placement, implant is stored in different storage medium and treated with UV light. Both of them are applicable methods to increase the bioactivity of titanium and overcome the biological aging. This study was designed to assess the effect of vacuum storage method and air storage with and without UV light treated of Cp Ti implant mechanically and histologically. Materials and methods: Titanium screws were acid etched and prepared in four different modes using different storage methods (air or vacuum and, with or without UV treatment. The implan
... Show MoreWith the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardw
... Show MoreDue to the high mobility and dynamic topology of the FANET network, maintaining communication links between UAVs is a challenging task. The topology of these networks is more dynamic than traditional mobile networks, which raises challenges for the routing protocol. The existing routing protocols for these networks partly fail to detect network topology changes. Few methods have recently been proposed to overcome this problem due to the rapid changes of network topology. We try to solve this problem by designing a new dynamic routing method for a group of UAVs using Hybrid SDN technology (SDN and a distributed routing protocol) with a highly dynamic topology. Comparison of the proposed method performance and two other algorithms is simula
... Show More