Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.
Simple, economic and sensitive mathematical spectrophotometric methods were developed for the estimation 4-aminoantipyrine in presence of its acidic product. The estimation of binary mixture 4-aminoantipyrine and its acidic product was achieved by first derivative and second derivative spectrophotometric methods by applying zero-crossing at (valley 255.9nm and 234.5nm) for 4-aminoantipyrine and (peak 243.3 nm and 227.3nm) for acidic product. The value of coefficient of determination for the liner graphs were not less than 0.996 and the recovery percentage were found to be in the range from 96.555 to 102.160. Normal ratio spectrophotometric method 0DD was used 50 mg/l acidic product as a divisor and then measured at 299.9 nm with correlat
... Show MoreIs in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
Abstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreThis research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreSimple, economic and sensitive mathematical spectrophotometric methods were developed for the estimation 4-aminoantipyrine in presence of its acidic product. The estimation of binary mixture 4-aminoantipyrine and its acidic product was achieved by first derivative and second derivative spectrophotometric methods by applying zero-crossing at (valley 255.9nm and 234.5nm) for 4-aminoantipyrine and (peak 243.3 nm and 227.3nm) for acidic product. The value of coefficient of determination for the liner graphs were not less than 0.996 and the recovery percentage were found to be in the range from 96.555 to 102.160. Normal ratio spectrophotometric method 0DD was used 50 mg/l acidic product as a divisor
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show Moreلقد كان حرص المؤلف على إصدار هذا الكتاب نابعا ً من قناعة تامة بأن مجال التقويم والقياس بحاجة إلى كتاب علمي حديث يتناول عرض أدوات الاختبار والقياس والمتمثلة بالصدق والثبات ويتسم بالوضوح في التعبير عن المفاهيم والمصطلحات والأنواع لكل منها ليكون وسيلة مبسطة بأيدي الأساتذة والباحثين وطلبتي الدراسات العليا الماجستير والدكتوراه لإستخراج صدق وثبات الاختبارات والمقاييس بطرق إحصائية متقدمة من خلال إستخدام البرنا
... Show MoreThe physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show More