Preferred Language
Articles
/
0Bfi4ZIBVTCNdQwCe8Ld
Adaptation Proposed Methods for Handling Imbalanced Datasets based on Over-Sampling Technique
...Show More Authors

Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE),  Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
Comparison of three interpolation methods for the average monthly temperature in the south of Iraqi zone
...Show More Authors

This study focuses on evaluating the suitability of three interpolation methods in terms of their accuracy at climate data for some provinces of south of Iraq. Two data sets of maximum and minimum temperature in February 2008 from nine meteorological stations located in the south of Iraq using three interpolation methods. ArcGIS is used to produce the spatially distributed temperature data by using IDW, ordinary kriging, and spline. Four statistical methods are applied to analyze the results obtained from three interpolation methods. These methods are RMSE, RMSE as a percentage of the mean, Model efficiency (E) and Bias, which showed that the ordinary krigingis the best for this data from other methods by the results that have b

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 03 2025
Journal Name
Journal Of Taibah University For Science
Effective computational methods for solving the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions
...Show More Authors

This paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Science
Efficient Computational Methods for Solving the One-Dimensional Parabolic Equation with Nonlocal Initial and Boundary Conditions
...Show More Authors

     The primary objective of the current paper is to suggest and implement effective computational methods (DECMs) to calculate analytic and approximate solutions to the nonlocal one-dimensional parabolic equation which is utilized to model specific real-world applications. The powerful and elegant methods that are used orthogonal basis functions to describe the solution as a double power series have been developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli polynomials. Hence, a specified partial differential equation is reduced to a system of linear algebraic equations that can be solved by using Mathematica®12. The techniques of effective computational methods (DECMs) have been applied to solve some s

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Oct 31 2021
Journal Name
Iraqi Geological Journal
Use Conventional and Statistical Methods for Porosity Estimating in Carbonate Reservoir in Southern Iraq, Case Study
...Show More Authors

Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol

... Show More
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 18 2021
Journal Name
Chemical Papers
Analytical methods for the identification of micro/nano metals in e-cigarette emission samples: a review
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving Convective Straight and Radial Fins with Temperature-Dependent Thermal Conductivity Problems
...Show More Authors

In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Ecological Engineering
Calibration and evaluation of aquacrop for maize (Zea Mays L.) under different irrigation and cultivation methods
...Show More Authors

rop simulation models play a pivotal role in evaluating irrigation management strategies to improve water use in agriculture. The aim of this study is to verify the validity of the Aquacrop model of maize under the surface and sprinkler irrigation systems, and a cultivation system, borders and furrows, and for two varieties of Maze (Fajr and Drakma) At two different sites in Iraq, Babylon and Al-Qadisiyah governorates. An experiment was conducted to evaluate the performance of the Aquacrop model in simulating canopy cover (CC), biomass (B), dry yield, harvest index (HI), and water productivity (WP). The results of RMSE, R2, MAE, d, NSE, CC, Pe indicated good results and high compatibility between measured and simulated values. The highest a

... Show More
View Publication Preview PDF
Scopus (12)
Scopus
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Use Of Some Parametric And Non parametric Methods For Analysis Of Factorial Experiments With Application
...Show More Authors

summary

In this search, we examined the factorial experiments and the study of the significance of the main effects, the interaction of the factors and their simple effects by the F test (ANOVA) for analyze the data of the factorial experience. It is also known that the analysis of variance requires several assumptions to achieve them, Therefore, in case of violation of one of these conditions we conduct a transform to the data in order to match or achieve the conditions of analysis of variance, but it was noted that these transfers do not produce accurate results, so we resort to tests or non-parametric methods that work as a solution or alternative to the parametric tests , these method

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
COMPARISON OF SOME NONPARAMETRIC METHODS TO DETERMINE THE NUMBER OF RADIATION DOSES FOR BREAST CANCER PATIENTS
...Show More Authors

Radiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu

... Show More
Scopus
Publication Date
Wed Aug 18 2021
Journal Name
Chemical Papers
Analytical methods for the identification of micro/nano metals in e-cigarette emission samples: a review
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref